The search functionality is under construction.

Keyword Search Result

[Keyword] low profile(3hit)

1-3hit
  • Ultra Low Profile Dipole Antenna with a Simplified Feeding Structure and a Parasitic Element

    Arpa THUMVICHIT  Tadashi TAKANO  Yukio KAMATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    576-580

    This study is devoted to a half-wave dipole with a conductor plane at a distance much smaller than a quarter wavelength which we designate as an ultra low profile dipole (ULPD) antenna in this paper. The concerns of ULPD antenna are the feeding method and the impedance matching, because the input impedance usually tends to be lowered by the existence of a metallic structure in its proximity. In this paper, we propose a ULPD antenna with an excellent impedance matching and a coaxial feed built within the antenna structure so that the external matching and a balun are not required. A coaxial cable is used as a feed line and extended to be a half of a half wavelength dipole. The other half is made up of a parasitic element, which is connected to the outer conductor of the coaxial radiator. To make a matching, the outer conductor of the coaxial radiator is stripped off at a suitable length, and the total length of a dipole is considered for its resonance at a desired frequency of 2 GHz. The experiment has been conducted. The results show the return loss of -27 dB and the maximum gain of 9 dBi in the normal direction to the conductor plane. The computational results are also obtained, which agree well with the experimental results.

  • Characteristics of Built-In Folded Monopole Antenna for Handsets

    Shogo HAYASHIDA  Tomoki TANAKA  Hisashi MORISHITA  Yoshio KOYANAGI  Kyohei FUJIMOTO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2275-2283

    A folded loop antenna for handsets has already been introduced and shown as one of balance-fed antennas for handsets, which is very effective to mitigate the antenna performance degradation due to the body effect. In order to meet the requirements for the latest handsets such as low profile and small size, a folded loop antenna is modified. The antenna, which is possibly built in the handsets, is newly proposed. Low profile and small size is achieved by consisting of the half of low profile folded loop antenna, which has a structure folded loop elements sideways so that the antenna can be placed on the ground plane (GP). In the analysis, the electromagnetic simulator based on the FDTD (Finite Difference Time Domain) method is used and the design parameters useful in practical operation are found. The electromagnetic simulator based on the Method of Moment (MoM) is used to calculate the current distribution on the antenna element and the GP. An example of low profile and small size antenna which has wideband characteristics are designed based on these parameters, and the antenna characteristics such as VSWR, the current distributions and the radiation patterns are compared with Planar Inverted-F Antenna (PIFA), which is one of conventional built-in antennas for handset. As a result, it has been confirmed that the physical volume of the antenna, which has been introduced here, becomes smaller than that of PIFA. In addition, the radiation efficiency of these antennas is measured and the results are compared with each other.

  • Spatial Profile of Blood Velocity Reconstructed from Telemetered Sonogram in Exercising Man

    Jufang HE  Yohsuke KINOUCHI  Hisao YAMAGUCHI  Hiroshi MIYAMOTO  

     
    PAPER

      Vol:
    E78-A No:12
      Page(s):
    1669-1676

    A continuous-wave ultrasonic Doppler system using wide field ultrasound transducers was applied to telemeter blood velocity from the carotid artery of exercising subjects. Velocity spectrogram was obtained by Hanning windowed fast Fourier transformation of the telemetered data. Distortion caused by a high-pass filter and transducers in the telemetry system was discussed in the paper. As the maximum Reynolds number in our experiment was 1478 which is smaller than the critical level of 2000, the blood flow should be laminar. Spatial velocity profiles were then reconstructed from the velocity spectrogram. In this paper, we defined a converging index Q of the velocity spectrum to measure the bluntness of the spatial velocity distribution across the blood vessel. Greater Q, the blunter the velocity profile will be. Simulation results for spatial velocity distributions of theoretical parabolic flow and Gaussian-distribution spectra with varied Q value showed that the cut-off effect by a high-pass filter of cut-off frequency fc=200Hz in our system could be ignored when the axial velocity is larger than 0.30 m/s and Q is greater than 2.0. Our experimental results, in contrast to those obtained from phantom systems by us and by Hein and O'Brien, indicate that the distribution of blood velocity is much blunter than previously thought. The Q index exceeded 10 during systole, whereas it was 0.5 in parabolic flow. The peak of Q index lagged behind that of axial blood velocity by approximately 0.02s. The phase delay of the Q index curve might be due to the time needed for the red blood cells to form the non-homogeneous distribution.