1-2hit |
Shigeki SAKAGUCHI Shin-ichi TODOROKI
We propose low Rayleigh scattering Na2O-MgO-SiO2 (NMS) glass as a candidate material for low-loss optical fibers. This glass exhibits Rayleigh scattering which is only 0.4 times that of silica glass, and a theoretical evaluation suggests that it is dominated by density fluctuation. An investigation of the optical properties of NMS glass reveals that a minimum loss of 0.06 dB/km is expected at a wavelength of 1.6 µm and that the zero-material dispersion wavelength is found in the 1.5 µm band. To establish the waveguide structure, we evaluated the feasibility of using F-doped NMS (NMS-F) glass as a cladding layer for an NMS core and found that it is suitable because it exhibits low relative scattering (e.g. 0.7) and is versatile in terms of viscosity matching. We also describe an attempt to draw optical fibers using the double crucible technique.
Makoto TAKIYAMA Susumu OHTSUKA Tadashi SAKON Masaharu TACHIMORI
The dielectric breakdown strength of thermally grown silicon dioxide films was studied for MOS capacitors fabricated on silicon wafers that were intentionally contaminated with magnesium and zinc. Most of magnesium was detected in the oxide film after oxidation. Zinc, some of which evaporated from the surface of wafers, was detected only in the oxide film. The mechanism of the dielectric degradation is dominated by formation of metal silicates, such as Mg2SiO4 (Forsterite) and Zn2SiO4 (Wilemite). The formation of metal silicates has no influence on the generation lifetime of minority carriers, however, it provides the flat-band voltage shift less than 0.3 eV, and forces to increase the density of deep surface states with the zinc contamination.