The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] magnetometer(10hit)

1-10hit
  • Estimation of Core Size Distribution of Magnetic Nanoparticles Using High-Tc SQUID Magnetometer and Particle Swarm Optimizer-Based Inversion Technique Open Access

    Mohd Mawardi SAARI  Mohd Herwan SULAIMAN  Toshihiko KIWA  

     
    PAPER

      Pubricized:
    2023/10/25
      Vol:
    E107-C No:6
      Page(s):
    176-182

    In this work, the core size estimation technique of magnetic nanoparticles (MNPs) using the static magnetization curve obtained from a high-Tc SQUID magnetometer and a metaheuristic inversion technique based on the Particle Swarm Optimizer (PSO) algorithm is presented. The high-Tc SQUID magnetometer is constructed from a high-Tc SQUID sensor coupled by a flux transformer to sense the modulated magnetization signal from a sample. The magnetization signal is modulated by the lateral vibration of the sample on top of a planar differential detection coil of the flux transformer. A pair of primary and excitation coils are utilized to apply an excitation field parallel to the sensitive axis of the detection coil. Using the high-Tc SQUID magnetometer, the magnetization curve of a commercial MNP sample (Resovist) was measured in a logarithmic scale of the excitation field. The PSO inverse technique is then applied to the magnetization curve to construct the magnetic moment distribution. A multimodal normalized log-normal distribution was used in the minimization of the objective function of the PSO inversion technique, and a modification of the PSO search region is proposed to improve the exploration and exploitation of the PSO particles. As a result, a good agreement on the Resovist magnetic core size was obtained between the proposed technique and the non-negative least square (NNLS) inversion technique. The estimated core sizes of 8.0484 nm and 20.3018 nm agreed well with the values reported in the literature using the commercial low-Tc SQUID magnetometer with the SVD and NNLS inversion techniques. Compared to the NNLS inversion technique, the PSO inversion technique had merits in exploring an optimal core size distribution freely without being regularized by a parameter and facilitating an easy peak position determination owing to the smoothness of the constructed distribution. The combination of the high-Tc SQUID magnetometer and the PSO-based reconstruction technique offers a powerful approach for characterizing the MNP core size distribution, and further improvements can be expected from the recent state-of-the-art optimization algorithm to optimize further the computation time and the best objective function value.

  • Simulation of Scalar-Mode Optically Pumped Magnetometers to Search Optimal Operating Conditions Open Access

    Yosuke ITO  Tatsuya GOTO  Takuma HORI  

     
    INVITED PAPER

      Pubricized:
    2023/12/04
      Vol:
    E107-C No:6
      Page(s):
    164-170

    In recent years, measuring biomagnetic fields in the Earth’s field by differential measurements of scalar-mode OPMs have been actively attempted. In this study, the sensitivity of the scalar-mode OPMs under the geomagnetic environment in the laboratory was studied by numerical simulation. Although the noise level of the scalar-mode OPM in the laboratory environment was calculated to be 104 pT/$\sqrt{\mathrm{Hz}}$, the noise levels using the first-order and the second-order differential configurations were found to be 529 fT/cm/$\sqrt{\mathrm{Hz}}$ and 17.2 fT/cm2/$\sqrt{\mathrm{Hz}}$, respectively. This result indicated that scalar-mode OPMs can measure very weak magnetic fields such as MEG without high-performance magnetic shield roomns. We also studied the operating conditions by varying repetition frequency and temperature. We found that scalar-mode OPMs have an upper limit of repetition frequency and temperature, and that the repetition frequency should be set below 4 kHz and the temperature should be set below 120°C.

  • Magnetic Anomaly Detection with Empirical Mode Decomposition Trend Filtering

    Han ZHOU  Zhongming PAN  Zhuohang ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2503-2506

    Magnetic Anomaly Detection (MAD) is a passive method for the detection of ferromagnetic objects. Currently, the performance of a MAD system is limited by the magnetic background noise that is non-stationary and shows self-similarity and long-range correlation. In this paper, we propose an empirical mode decomposition (EMD) trend filtering based energy detector for adaptively detecting the magnetic anomaly signal from the background noise. The input data is first detrended adaptively with the energy-ratio trend filtering approach. Then, the magnetic anomaly signal is detected using an energy detector. The proposed detector does not need any a priori knowledge about the target or assumptions regarding the background noise. Experiments also prove that the proposed detector shows a more stable performance than the existing undecimated discrete wavelet transform (UDWT) based energy detector.

  • SQUID Systems for Geophysical Time Domain Electromagnetics (TEM) at IPHT Jena Open Access

    Andreas CHWALA  Ronny STOLZ  Matthias SCHMELZ  Vyacheslav ZAKOSARENKO  Matthias MEYER  Hans-Georg MEYER  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    167-173

    Forty years after the first application of Superconducting Quantum Interference Devices (SQUIDs) [1], [2] for geophysical purposes, they have recently become a valued tool for mineral exploration. One of the most common applications is time domain (or transient) electromagnetics (TEM), an active method, where the inductive response from the ground to a changing current (mostly rectangular) in a loop on the surface is measured. After the current in the transmitter coil is switched, eddy currents are excited in the ground, which decay in a manner dependent on the conductivity of the underlying geologic structure. The resulting secondary magnetic field at the surface is measured during the off-time by a receiver coil (induced voltage) or by a magnetometer (e.g. SQUID or fluxgate). The recorded transient signal quality is improved by stacking positive and negative decays. Alternatively, the TEM results can be inverted and give the electric conductivity of the ground over depth. Since SQUIDs measure the magnetic field with high sensitivity and a constant frequency transfer function, they show a superior performance compared to conventional induction coils, especially in the presence of strong conductors. As the primary field, and especially its slew rate, are quite large, SQUID systems need to have a large slew rate and dynamic range. Any flux jump would make the use of standard stacking algorithms impossible. IPHT and Supracon are developing and producing SQUID systems based on low temperature superconductors (LTS, in our case niobium), which are now state-of-the-art. Due to the large demand, we are additionally supplying systems with high temperature superconductors (HTS, in our case YBCO). While the low temperature SQUID systems have a better performance (noise and slew rate), the high temperature SQUID systems are easier to handle in the field. The superior performance of SQUIDs compared to induction coils is the most important factor for the detection of good conductors at large depth or ore bodies underneath conductive overburden.

  • Superconductive Digital Magnetometers with Single-Flux-Quantum Electronics Open Access

    Pascal FEBVRE  Torsten REICH  

     
    INVITED PAPER

      Vol:
    E93-C No:4
      Page(s):
    445-452

    Superconducting Quantum Interference Devices (SQUIDs) are known to be the most sensitive magnetometers, used in a wide range of applications like biomagnetism, geomagnetism, Non Destructive Evaluation (NDE), metrology or fundamental science. For all these applications, the SQUID sensor is used in analog mode and associated with a carefully designed room-temperature control and/or feedback electronics. Nevertheless, the use of SQUID sensors in digital mode is of high interest for several applications due to their quantum accuracy associated to high linearity, and their potentially very high slew rate and dynamic range. The concept and performances of a low-Tc digital magnetometer based on Single-Flux-Quantum (SFQ) logic, fabricated at the FLUXONICS Foundry located at IPHT Jena, Germany, are given after a presentation of the context of development of superconductive digital magnetometers. The sensitivity, limited to one magnetic single flux quantum, and a dynamic range of 76 dB, that corresponds to an upper limit of the magnetic field amplitude higher than 5 µT, have been measured along with overnight stability. The dynamic range of about 2800 magnetic flux quanta Φ0 has been experimentally observed with an external magnetic field. First signatures of magnetic fields have been observed simultaneously with the ones of analog SQUIDs in the low noise environment of the Laboratoire Souterrain a Bas Bruit (LSBB) located in Rustrel, Provence, France.

  • Double Relaxation Oscillation SQUID Systems for Biomagnetic Multichannel Measurements

    Yong-Ho LEE  Hyukchan KWON  Jin-Mok KIM  Kiwoong KIM  In-Seon KIM  Yong-Ki PARK  

     
    INVITED PAPER

      Vol:
    E88-C No:2
      Page(s):
    168-174

    Multichannel superconducting quantum interference device (SQUID) systems based on double relaxation oscillation SQUIDs (DROS) were developed for measuring magnetocardiography (MCG) and magnetoencephalography (MEG) signals. Since DROS provides large flux-to-voltage transfer coefficients, about 10 times larger than the DC SQUIDs, direct readout of the SQUID output was possible using compact room-temperature electronics. Using DROSs, we fabricated two types of multichannel systems; a 37-channel magnetometer system with circular sensor distribution for measuring radial components of MEG signals, and two planar gradiometer systems of 40-channel and 62-channel measuring tangential components of MCG or MEG signals. The magnetometer system has external feedback to eliminate magnetic coupling with adjacent channels, and reference vector magnetometers were installed to form software gradiometers. The field noise of the magnetometers is around 3 fT/ at 100 Hz inside a magnetically shielded room. The planar gradiometer systems have integrated first-order gradiometer in thin-film form with a baseline of 40 mm. The magnetic field gradient noise of the planar gradiometers is about 1 fT/cm/ at 100 Hz. The planar gradiometers were arranged to measure field components tangential to the body surface, providing efficient measurement of especially MCG signals with smaller sensor coverage than the conventional normal component measurements.

  • Helium-Free Torque Magnetometer up to 10 kG at 1.5-300 K

    Mitsuyuki TSUJI  Nariaki YAMAMOTO  Shin'ichiro NAKATA  Shuichi KAWAMATA  Takekazu ISHIDA  Satoru OKAYASU  Kiichi HOJOU  

     
    PAPER-Instruments and Coolers

      Vol:
    E85-C No:3
      Page(s):
    756-758

    We have developed a new torque magnetometer on the basis of a 4-K refrigerator. The system temperature can be lowered down to 1.5 K by pumping liquefied helium from a top loading sample space. A piezoresistor bridge on a Si cantilever is used to detect torque acting on a sample. A transverse magnetic field is supplied by a variable-field permanent magnet up to 10 kG. We find that a sensitivity of our torque magnetometer is Δ τ 10-10 Nm.

  • Progress in High Tc Superconducting Quantum Interference Device (SQUID) Magnetometer

    Keiji ENPUKU  Tadashi MINOTANI  

     
    INVITED PAPER-SQUIDs

      Vol:
    E83-C No:1
      Page(s):
    34-43

    Recent progresses in high Tc superconducting quantum interference device (SQUID) magnetometers are discussed. First, intrinsic sensitivity of the SQUID at T=77 K is discussed. For this purpose, transport and noise properties of the bicrystal junction are clarified, and optimization of junction parameters is shown. We also discuss the quality of the SQUID from a comprehensive comparison between experiment and simulation of the SQUID characteristics. Next, we discuss issues to guarantee correct operation of the SQUID magnetometer in noisy environment, such as a method to avoid flux trapping due to earth magnetic field, high-bandwidth electronics and gradiometer. Finally, we briefly describe application fields of the high Tc magnetometer.

  • Evaluation of High-Tc Superconducting Quantum Interference Device with Alternating Current Bias DOIT and Additional Positive Feedback

    Akira ADACHI  

     
    PAPER

      Vol:
    E80-C No:10
      Page(s):
    1252-1257

    This study shows the results of evaluating the flux noises at low frequency when the alternating current(AC) bias direct offset integrated technique(DOIT) with additional positive feedback (APF) is used in a high-Tc dc superconducting quantum interference device (SQUID). The AC-bias DOIT can reduce low-frequency noise without increasing the level of white noise because each operating point in the two voltage-flux characteristics with AC bias can always be optimum on the magnetometer in the high-Tc dc-SQUID. APF can improve the effective flux-to-voltage transfer function so that it can reduce the equivalent flux noise due to the voltage noise of the preamplifier in the magnetometer. The use of APF combined with the AC-bias DOIT reduced the noise of the magnetometer by factors of 1.5 (33µΦ0/Hz vs. 50 µΦ0/Hz) at100 Hz, 3.5 (43 µΦ0/Hz vs. 150 µΦ0/Hz) at 10 Hz, and 5.2 (67 µΦ0/Hz vs. 351 µΦ0/Hz) at 1 Hz as compared with the noise levels that were obtained with the static-current-bias DOIT. The contribution of the factors at 1 Hz is about 2 by APF and 2.6 by AC bias. The performance of improving the flux noise in the AC -bias DOIT with APF is almost equal to that of the flux locked loop (FLL) circuits in which the flux modulation uses a coupling system with a transformer and with the AC bias.

  • Modular Middle-Scale SQUID Magnetometer System for Neuromagnetic Research

    Yoshihiro HIRATA  Shinya KURIKI  

     
    INVITED PAPER-Analog applications

      Vol:
    E79-C No:9
      Page(s):
    1213-1218

    A new 19-channel SQUID magnetometer system has been developed for research use in order to measure the neuromagnetic fields originating from cortices of the human brain.The system could function for 6 days with a one-time supply of about 25 L of liquid helium. The system consists of Nb/Al-oxide/Nb SQUID sensors with 2nd-order gradiometers, tank circuits, readout electronics, a liquid helium dewar, a gantry, and a prefabricated shielded room. The gradiometers cover a circular area of 15 cm radius. We used fine stainless steel leads for electric connection between the sensors and room-temperature electronics with low thermal conduction in a low helium consumption dewar. The system could function for 6 days with a one-time supply of about 25L of liquid helium. The system can be thermally cycled for repeated measurements, with an intervening nonusage period at room temperature. The noise characteristics, for both the time and frequency domains, of all channels were measured. From an analysis of the voltage output at the phase-sensitive detector, the flux-origin noise which is generated by external sources was dominant in the white noise frequency. The power spectra of the noise field were below 10 fT/Hz1/2 at 10-100 Hz and below 18 fT/Hz1/2 at 1-10 Hz. Some other peaks of power line frequencies such as 50 Hz and 150 Hz were observed at several channels. Sound-evoked magnetic fields were measured from the temporal area of the head upon application of tone bursts. The evoked fields were recorded with the amplitude of about 250 fTpp. The isofield contours of the peak response showed that the measurement area is large enough to estimate current dipoles. It is confirmed that the system has the ability to measure magnetic fields from the human brain.