The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] medical electronics(4hit)

1-4hit
  • High-Resolution Determination of Transit Time of Ultrasound in a Thin Layer in Pulse-Echo Method

    Tomohisa KIMURA  Hiroshi KANAI  Noriyoshi CHUBACHI  

     
    PAPER

      Vol:
    E78-A No:12
      Page(s):
    1677-1682

    In this paper we propose a new method for removing the characteristic of the piezoelectric transducer from the received signal in the pulse-echo method so that the time resolution in the determination of transit time of ultrasound in a thin layer is increased. The total characteristic of the pulse-echo system is described by cascade of distributed-constant systems for the ultrasonic transducer, matching layer, and acoustic medium. The input impedance is estimated by the inverse matrix of the cascade system and the voltage signal at the electrical port. From the inverse Fourier transform of input impedance, the transit time in a thin layer object is accurately determined with high time resolution. The principle of the method is confirmed by simulation experiments.

  • Interpolation of CT Slices for Laser Stereolithography

    Takanori NAGAE  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:8
      Page(s):
    905-911

    An algorithm interpolating parallel cross-sections between CT slices is described. Contours of equiscalar or constant-density surfaces on cross-sections are directly obtained as non-intersecting loops from grayscale slice images. This algorithm is based on a general algorithm that the authors have proposed earlier, constructing triangulated orientable closed surfaces from grayscale volumes and is particularly suited for a new technique, called laser stereolithography, which creates real 3D plastic objects using UV laser to scan and harden liquid polymer. The process of laser stereolithography is executed slice by slice, and this technique really requires some interpolation of intermediate cross-sections between slices. For visualizing, surfaces are only expected to be shaded almost continuously. The local defects are invisible and not cared about if the picture resolution is rather poor. On the contrary, topological faults are fatal to construct solid models by laser stereolithography, i.e., every contour line on cross-sections must be closed with no intersection. Not a single break of a contour line is tolerated. We already have many algorithms available for equiscalar surface construction, and it seems that if we cut the surfaces, then contour lines could be obtained. However, few of them are directly applicable to solid modeling. Marching cubes algorithm, for example, does not ensure the consistency of surface topology. Our algorithm guarantee an adequate topology of contour lines.

  • Orientable Closed Surface Construction from Volume Data

    Takanori NAGAE  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:2
      Page(s):
    269-273

    Surface construction is known as a way to visualize volume data. Although currently used algorithms such as marching cubes have good enough quality for volume visualization, they do not ensure adequate surface topology. These algorithms work well when the surface is rather simple. While when complicated, the surface does not separate the internal and external spaces, that is, there exist some holes on the surface, or exist redundant overlaps or self-intersection. Actually, adequate surface topology is important not only for visualization but for laser stereolithography, which creates real 3D plastic objects. In the present paper, we propose a new method that produces a set of triangular patches from a given volume data. The fact that the set of patches has no holes, no redundancy, no self-intersection, and has orientable closed surface topology is shown.

  • A Simulation Model of Hyperthermia by RF Capacitive Heating

    Yasutomo OHGUCHI  Naoki WATANABE  Yoshiro NIITSU  Osamu DOI  Ken KODAMA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E75-D No:2
      Page(s):
    219-250

    A new model for a computer simulation of RF capacitive type hyperthermia has been developed by taking account of the following points. Blood flow is usually determined by many physiological parameters, but is regarded as a function of only blood temperature under some conditions. The temperature dependence of blood flow of tumors and normal tissues is assumed by referring the data obtained by Song et al. and Tanaka. The blood temperature which is elevated by externally applied power significantly affects temperatures of the body and the tumors. The transport of heat from the body surface is studied by considering air convection. These points are examined by experiments on a computer with simple phantom models and real patients. The results of simulation on the patient have shown a good agreement with clinical inspection based on CT images and a temperature of the stomach.