1-3hit |
Claude WEISBUCH Henri BENISTY Segolene OLIVIER Maxime RATTIER Christopher J. M. SMITH Thomas F. KRAUSS
Photonic crystals have seen major advances in the past few years in the optical range. The association of in-plane waveguiding and two-dimensional photonic crystals (PCs) in thin-slab or waveguide structures leads to good 3D confinement with easy fabrication. Such structures, much easier to fabricate than 3D PCs open many exciting opportunities in optoelectronic devices and integrated optics. We present experiments on a variety of structures and devices, as well as modelling tools, which show that 2D PCs etched through waveguides supported by substrates are a viable route to high-performance PC-based photonic integrated circuits (PICs). In particular, they exhibit low out-of-plane diffraction losses. Low-loss waveguides, high finesse microcavities, and their mutual coupling are demonstrated. PACS: 42.70 QS, 42.55 Sa, 42.82 m, 42.50-p.
Claude WEISBUCH Henri BENISTY Segolene OLIVIER Maxime RATTIER Christopher J. M. SMITH Thomas F. KRAUSS
Photonic crystals have seen major advances in the past few years in the optical range. The association of in-plane waveguiding and two-dimensional photonic crystals (PCs) in thin-slab or waveguide structures leads to good 3D confinement with easy fabrication. Such structures, much easier to fabricate than 3D PCs open many exciting opportunities in optoelectronic devices and integrated optics. We present experiments on a variety of structures and devices, as well as modelling tools, which show that 2D PCs etched through waveguides supported by substrates are a viable route to high-performance PC-based photonic integrated circuits (PICs). In particular, they exhibit low out-of-plane diffraction losses. Low-loss waveguides, high finesse microcavities, and their mutual coupling are demonstrated. PACS: 42.70 QS, 42.55 Sa, 42.82 m, 42.50-p.
Dennis G. DEPPE Diana L. HUFFAKER Hongyu DENG Qing DENG Tchang-Hun OH
The use of selective oxidation to fabricate vertical-cavity surface-emitting lasers is described. The nativeoxide impacts the device design in two ways, the first being in the introduction of an intracavity dielectric aperture that laterally confines the mode, and the second in the formation of high contrast dielectric Bragg reflectors to shorten the effective cavity length. To date the more important has been the indexconfinement, with record low threshold currents, threshold voltages, and power conversion efficiencies being reported from several groups. However, future designs will likely also benefit from the reduced diffraction loss for a small mode size that is possible with high contrast native oxide/semiconductor mirrors. We describe some of the most important design issues in obtaining ultralow threshold operation.