The search functionality is under construction.

Keyword Search Result

[Keyword] microstrip components(2hit)

1-2hit
  • Multi-Stage, Multi-Way Microstrip Power Dividers with Broadband Properties

    Mitsuyoshi KISHIHARA  Isao OHTA  Kuniyoshi YAMANE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:5
      Page(s):
    622-629

    This paper presents a design method of multi-stage, multi-way microstrip power dividers with the aim of constructing a compact low-loss power divider with numbers of outputs. First, an integration design technique of power dividers composed of multi-step, multi-furcation and mitered bends is described. Since the analytical technique is founded on the planar circuit approach combined with the segmentation method, the optimization of the circuit patterns can be performed in a reasonable short computation time. Next, the present method is applied to the design of broadband Nn-way power dividers such as 32-way power divider consisting of 3-way dividers in two-stage structures, respectively. In addition, a 12-way power divider constructed from a series connection of a 3-way and three 4-way dividers is designed. The dividers equivalently contain a 3-section Chebyshev transformer to realize broadband properties. As a result, the fractional bandwidths of nearly 85% and 66.7% for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB are obtained for the 9- and 12-way power dividers, respectively. The validity of these design results is confirmed by a commercial em-simulator (Ansoft HFSS) and experiments.

  • Broadband Multi-Way Microstrip Power Dividers

    Mitsuyoshi KISHIHARA  Kuniyoshi YAMANE  Isao OHTA  Tadashi KAWAI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    20-27

    This paper treats multi-way microstrip power dividers composed of multi-step, multi-furcation, and corners. Since the design procedure is founded on the planar circuit approach in combination with the segmentation method, optimization of the circuit configuration can be performed in a reasonable short computation time when applying the Powell's optimization algorithm. Actually, broadband 3- and 4-way power dividers with mitered bends are designed, and fractional bandwidths of about 90% and 100% are realized for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB, respectively. The validity of the design results is confirmed by an EM-simulator (HFSS) and experiments.