1-10hit |
This paper proposes a painterly morphing algorithm for mobile smart devices, where each frame in the morphing sequence looks like an oil-painted picture with brush strokes. It can be presented, for example, during the transition between the main screen and a specific application screen. For this, a novel dissimilarity function and acceleration data structures are developed. The experimental results show that the algorithm produces visually stunning effects at an interactive time.
Miki HASEYAMA Makoto TAKIZAWA Takashi YAMAMOTO
In this paper, a new video frame interpolation method based on image morphing for frame rate up-conversion is proposed. In this method, image features are extracted by Scale-Invariant Feature Transform in each frame, and their correspondence in two contiguous frames is then computed separately in foreground and background regions. By using the above two functions, the proposed method accurately generates interpolation frames and thus achieves frame rate up-conversion.
Makoto TACHIBANA Junichi YAMAGISHI Takashi MASUKO Takao KOBAYASHI
This paper describes an approach to generating speech with emotional expressivity and speaking style variability. The approach is based on a speaking style and emotional expression modeling technique for HMM-based speech synthesis. We first model several representative styles, each of which is a speaking style and/or an emotional expression, in an HMM-based speech synthesis framework. Then, to generate synthetic speech with an intermediate style from representative ones, we synthesize speech from a model obtained by interpolating representative style models using a model interpolation technique. We assess the style interpolation technique with subjective evaluation tests using four representative styles, i.e., neutral, joyful, sad, and rough in read speech and synthesized speech from models obtained by interpolating models for all combinations of two styles. The results show that speech synthesized from the interpolated model has a style in between the two representative ones. Moreover, we can control the degree of expressivity for speaking styles or emotions in synthesized speech by changing the interpolation ratio in interpolation between neutral and other representative styles. We also show that we can achieve style morphing in speech synthesis, namely, changing style smoothly from one representative style to another by gradually changing the interpolation ratio.
This paper describes a dynamic and adaptive scheme for three-dimensional mesh morphing. Using several control maps, the connectivity of intermediate meshes is dynamically changing and the mesh vertices are adaptively modified. The 2D control maps in parametric space that include curvature map, area deformation map and distance map, are used to schedule the inserting and deleting vertices in each frame. Then, the positions of vertices are adaptively moved to better positions using weighted centroidal voronoi diagram (WCVD) and a Delaunay triangulation is finally used to determine the connectivity of mesh. In contrast to most previous work, the intermediate mesh connectivity gradually changes and is much less complicated. We demonstrate several examples of aesthetically pleasing morphs created by the proposed method.
We propose Optimal Temporal Decomposition (OTD) of speech for voice morphing preserving Δ cepstrum. OTD is an optimal modification of the original Temporal Decomposition (TD) by B. Atal. It is theoretically shown that OTD can achieve minimal spectral distortion for the TD-based approximation of time-varying LPC parameters. Moreover, by applying OTD to preserving Δ cepstrum, it is also theoretically shown that Δ cepstrum of a target speaker can be reflected to that of a source speaker. In frequency domain interpolation, the Laplacian Spectral Distortion (LSD) measure is introduced to improve the Inverse Function of Integrated Spectrum (IFIS) based non-uniform frequency warping. Experimental results indicate that Δ cepstrum of the OTD-based morphing spectra of a source speaker is mostly equal to that of a target speaker except for a piecewise constant factor and subjective listening tests show that the speech intelligibility of the proposed morphing method is superior to the conventional method.
Dae-Hyun KIM Jung-Hoon KIM Yong-In YOON In-Hwan OH Jong-Soo CHOI
In this paper, we propose an algorithm that automatically generates the intermediate scenes using the bidirectional disparity morphing (BDM) from the parallel stereo images. The two-step search strategy is used for speeding up the computation of the bidirectional disparity map and three occluding patterns are used for smoothing the computed disparities more elaborately. Using the bidirectional disparity map, we interpolate the left and the right image to their intermediate scenes. Then we dissolve two interpolated images into the desired intermediate scene which the holes are removed and the effect of the disparity estimation errors is minimized. We implemented the proposed algorithm on TM1300 supported by TriMedia using pSOSytem which enables to do multiprocessing. As a result, we can interpolate the high-quality intermediate scenes with real-time process.
A simple and an efficient algorithm for polygon morphing is proposed in this paper. We adopt the parametric curve representation based on Fourier parameter estimation to transfer the traditional morphing process in spatial domain to a process in the parametric space instead. The principles are to express the polygon as the union of matching segments that are described by the estimated Fourier parameters. We have also designed a data resampling method that effectively controls the shape morphing according to the corresponding curvature values. Intermediate objects in-between the source and target polygons are then constructed based on the interpolation of Fourier parameters of the two polygons. Fourier parameters of the resampled polygons can be obtained efficiently by using the fast Fourier transform (FFT) algorithm. The experimental results show that the appearances of the morphed objects are superior to the ones obtained by the methods available.
Hasnine HAQUE Aboul-Ella HASSANIEN Masayuki NAKAJIMA
When the inter-slice resolution of tomographic image slices is large, it is necessary to estimate the locations and intensities of pixels, which would appear in the non-existed intermediate slices. This paper presents a new method for generating the missing medical slices from two given slices. It uses the contours of organs as the control parameters to the intensity information in the physical gaps of sequential medical slices. The Snake model is used for generating the control points required for the elastic body spline (EBS) morphing algorithm. Contour information derived from this segmentation pre-process is then further processed and used as control parameters to warp the corresponding regions in both input slices into compatible shapes. In this way, the intensity information of the interpolated intermediate slices can be derived more faithfully. In comparison with the existing intensity interpolation methods, including linear interpolation, which only considers corresponding points in a small physical neighborhood, this method warps the data images into similar shapes according to contour information to provide a more meaningful correspondence relationship.
We have developed a new disparity mapping technique for image morphing which prevents synthesized images from blurring and a fast rendering technique which realizes interactive morphing animation. In the image morphing rendering process, all pixels are moved according to their disparity maps and then distorted images are mixed with each other. Calculation costs of this process tend to be high because pixel per pixel moving and mixing are included. And if the accuracy of the disparity maps is low, synthesized images become blurred. This paper describes new two techniques for overcoming these problems. One is a disparity mapping technique by which the edges in each input image are accurately mapped to each other. This technique reduces blurring in synthesized images. The other is a data transformation technique by which the morphing rendering process is replaced with texture mapping, orthographic camera, α-brending and z-buffering. This transformation enables the morphing rendering process to be accelerated by 3D accelerators, thus enabling interactive morphing animations to be achieved on ordinary PCs.
Aboul-Ella HASSANIEN Masayuki NAKAJIMA
In this paper a new snake model for image morphing with semiautomated delineation which depends on Hermite's interpolation theory, is presented. The snake model will be used to specify the correspondence between features in two given images. It allows a user to extract a contour that defines a facial feature such as the lips, mouth, and profile, by only specifying the endpoints of the contour around the feature which we wish to define. We assume that the user can specify the endpoints of a curve around the features that serve as the extremities of a contour. The proposed method automatically computes the image information around these endpoints which provides the boundary conditions. Then the contour is optimized by taking this information into account near its extremities. During the iterative optimization process, the image forces are turned on progressively from the contour extremities toward the center to define the exact position of the feature. The proposed algorithm helps the user to easily define the exact position of a feature. It may also reduce the time required to establish the features of an image.