The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multi-hop network(34hit)

1-20hit(34hit)

  • Analytical Expressions for End-to-End Throughput of String-Topology Wireless Full-Duplex Multi-Hop Networks

    Chikara FUJIMURA  Kosuke SANADA  Kazuo MORI  

     
    PAPER-Network

      Pubricized:
    2018/12/25
      Vol:
    E102-B No:6
      Page(s):
    1160-1169

    Wireless Full-Duplex (FD) communication can double the point-to-point throughput. To obtain the full benefits of the FD technique in multi-hop networks, its potential throughput performance in multi-hop networks should be clarified qualitatively and quantitatively. Developing an analytical model for FD multi-hop networks is effective and useful for not only clarifying such network dynamics but also developing the optimal protocol design. However, generalized analytical expression for the end-to-end throughput of FD multi-hop networks has not been proposed. This paper proposes analytical expressions for the end-to-end throughput of string-topology wireless FD multi-hop networks. Our approach is to integrate with the analytical model of the airtime expression, which is an effective analytical approach of the throughput analysis for Half-Duplex (HD) multi-hop networks, and the Markov-chain model considering the FD MAC operation. The proposed model clarify the detailed effect of the FD MAC operation on the throughput performance in multi-hop networks. In particular, it can obtain the end-to-end throughput of FD multi-hop networks for arbitrary number of hops, arbitrary payload size and arbitrary value of the minimum contention window. The analytical expressions verified by comparisons with the simulation results. From the comparisons with the results in HD multi-hop networks, we confirm the effectiveness of the FD communication in multi-hop networks.

  • Performance Evaluation of Breadcrumbs in Wireless Multi-Hop Cache Networks

    Kento IKKAKU  Miki YAMAMOTO  

     
    PAPER-Network

      Pubricized:
    2018/10/18
      Vol:
    E102-B No:4
      Page(s):
    845-854

    In this paper, we first evaluate Breadcrumbs in wireless multi-hop networks and reveal that they brings throughput improvement of not only popular content but also less popular content. Breadcrumbs can distribute popular content traffic towards edges of a wireless network, which enables low-popularity content to be downloaded from the gateway node. We also propose a new caching decision, called receiver caching. In receiver caching, only the receiver node caches the transmitted content. Our simulation results show that receiver caching prevents frequent replacement of cached content, which reduces invalid Breadcrumbs trails to be remained. And they also show that receiver caching significantly improves the total throughput performance of Breadcrumbs.

  • Adaptive Bundle Flow Management for Reducing Control Traffic on SDN-Enabled Multi-Radio Wireless Networks

    Yuzo TAENAKA  Kazuki MIZUYAMA  Kazuya TSUKAMOTO  

     
    PAPER-Network

      Pubricized:
    2018/01/18
      Vol:
    E101-B No:7
      Page(s):
    1685-1692

    Applying Software Defined Network (SDN) technology to wireless networks are attracting much attention. Our previous study proposed a channel utilization method based on SDN/OpenFlow technology to improve the channel utilization efficiency of the multi-channel wireless backhaul network (WBN). However, since control messages are inherently transmitted with data traffic on a same channel in WBN, it inevitably degrades the network capacity. Specifically, the amount of control messages for collecting statistical information of each flow (FlowStats) linearly increases with the number of ongoing flows, thereby being the dominant overhead for backhaul networks. In this paper, we propose a new method that prevents the increase of control traffic while retaining the network performance of the previous method. Our proposed method uses statistical information of each interface (PortStats) instead of per-flow information (FlowStats), and handles multiple flows on the interface together if possible. Otherwise, to handle individual flow, we propose a way to estimate per-flow information without introducing extra control messages. Finally, we show that the proposed method offers the same performance with the previous method, while greatly reducing the amount of control traffic.

  • Throughput and Delay Analysis of IEEE 802.11 String-Topology Multi-Hop Network in TCP Traffic with Delayed ACK

    Kosuke SANADA  Hiroo SEKIYA  Kazuo MORI  

     
    PAPER-Network

      Pubricized:
    2017/11/20
      Vol:
    E101-B No:5
      Page(s):
    1233-1245

    This paper aims to establish expressions for IEEE 802.11 string-topology multi-hop networks with transmission control protocol (TCP) traffic flow. The relationship between the throughput and transport-layer function in string-topology multi-hop network is investigated. From the investigations, we obtain an analysis policy that the TCP throughput under the TCP functions is obtained by deriving the throughput of the network with simplified into two asymmetric user datagram protocol flows. To express the asymmetry, analytical expressions in medium access control-, network-, and transport layers are obtained based on the airtime expression. The expressions of the network layer and those of transport layer are linked using the “delayed ACK constraint,” which is a new concept for TCP analysis. The analytical predictions agree well with the simulation results, which prove the validity of the obtained analytical expressions and the analysis policy in this paper.

  • Receiver Performance Evaluation and Fading Duration Analysis for Concurrent Transmission

    Chun-Hao LIAO  Makoto SUZUKI  Hiroyuki MORIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    582-591

    Concurrent transmission (CT) is a revolutionary multi-hop protocol that significantly improves the MAC- and network-layer efficiency by allowing synchronized packet collisions. Although its superiority has been empirically verified, there is still a lack of studies on how the receiver survives such packet collisions, particularly in the presence of the carrier frequency offsets (CFO) between the transmitters. This work rectifies this omission by providing a comprehensive evaluation of the physical-layer receiver performance under CT, and a theoretical analysis on the fading duration of the beating effect resulting from the CFO. The main findings from our evaluations are the following points. (1) Beating significantly affects the receiver performance, and an error correcting mechanism is needed to combat the beating. (2) In IEEE 802.15.4 systems, the direct sequence spread spectrum (DSSS) plays such a role in combatting the beating. (3) However, due to the limited length of DSSS, the receiver still suffers from the beating if the fading duration is too long. (4) On the other hand, the basic M-ary FSK mode of IEEE 802.15.4g is vulnerable to CT due to the lack of error correcting mechanism. In view of the importance of the fading duration, we further theoretically derive the closed form of the average fading duration (AFD) of the beating under CT in terms of the transmitter number and the standard deviation of the CFO. Moreover, we prove that the receiver performance can be improved by having higher CFO deviations between the transmitters due to the shorter AFD. Finally, we estimate the AFD in the real system by actually measuring the CFO of a large number of sensor nodes.

  • A Sequential Iterative Resource Allocation Scheme for a 2-hop OFDMA Virtual Cellular Network

    Gerard Jimmy PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1640-1650

    Multi-hop networks have been proposed to increase the data transmission rate in wireless mobile networks, and consequently improve the quality of experience of cell-edge users. A successive resource allocation scheme (SAS) has been proposed for a 2-hop virtual cellular network (VCN). In a multi-cell environment, the performance of SAS degrades because of intra-cell and inter-cell interference. In order to alleviate the effect of intra-cell and inter-cell interference and consequently increase the channel capacity of the VCN, this paper proposes the sequential iterative allocation scheme (SIS). Computer simulation results show that, compared to SAS, SIS can improve the fairness, the ergodic, and the outage channel capacity per mobile terminal (MT) of the VCN in a multi-cell environment. This paper also analyzes the performance of the VCN compared to that of the single hop network (SHN) when SIS is applied in a multi-cell environment. Using SIS, VCN can provide higher ergodic channel capacity, and better degree of fairness than SHN in a multi-cell environment. The effect of the number of wireless ports (WPs) in the VCN is also investigated, and the results suggest that adding more WPs per virtual cell in the VCN can enhance the outage channel capacity per MT and the degree of fairness of the VCN.

  • End-to-End Delay Analysis for IEEE 802.11 String-Topology Multi-Hop Networks

    Kosuke SANADA  Jin SHI  Nobuyoshi KOMURO  Hiroo SEKIYA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E98-B No:7
      Page(s):
    1284-1293

    String-topology multi-hop network is often selected as an analysis object because it is one of the fundamental network topologies. The purpose of this paper is to establish expression for end-to-end delay for IEEE 802.11 string-topology multi-hop networks. For obtaining the analytical expression, the effects of frame collisions and carrier-sensing effect from other nodes under the non-saturated condition are obtained for each node in the network. For expressing the properties in non-saturated condition, a new parameter, which is frame-existence probability, is defined. The end-to-end delay of a string-topology multi-hop network can be derived as the sum of the transmission delays in the network flow. The analytical predictions agree with simulation results well, which show validity of the obtained analytical expressions.

  • Joint Resource Allocation with Interference Constraint for Cognitive Multi-Hop Wireless Networks

    Shuta KAKO  Osamu TAKYU  Takeo FUJII  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    569-577

    In this paper, we propose a secondary user (SU) resource assignment algorithm for a multi-hop (MH) cognitive radio network to improve the end-to-end throughput. In the MH networks used for spectrum sharing, each SU needs to improve the throughput by taking the primary user (PU) protection into account. For overcoming this problem, we estimate the PU acceptable received power, which is determined by the acknowledgment packet (ACK) power from the PU receiver at each SU. With this estimation, we propose an SU optimal transmit power control algorithm to not only maximize the end-to-end throughput of the SU MH flow but also maintain the considered PU acceptable interference power. In this study, a distributed joint allocation algorithm has been used to solve the optimization problem and to effectively allocate the power of each SU.

  • Error Detection Performance of TPSK Using AMI Code in Multi-Hop Communications under Rayleigh Fading Environments

    Kotoko YAMADA  Kouji OHUCHI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:12
      Page(s):
    2363-2365

    DetF (Detect-and-Forward) is studied as a relay method in multi-hop networks. When an error detection scheme is introduced, DetF is likely to achieve an efficient transmission. In this study, AMI (Alternate Mark Inversion) code is focused on as an error detection scheme. Error detection performances of ternary PSK (Phase Shift Keying) using AMI code and binary PSK using parity check code are examined. It is shown that ternary PSK using AMI code has a good error detection performance.

  • Prediction-Based Cross-Layer Resource Allocation for Wireless Multi-Hop Networks with Outdated CSI

    Wei FENG  Suili FENG  Yuehua DING  Yongzhong ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    746-754

    The rapid variation of wireless channels and feedback delay make the available channel state information (CSI) outdated in dynamic wireless multi-hop networks, which significantly degrades the accuracy of cross-layer resource allocation. To deal with this problem, a cross-layer resource allocation scheme is proposed for wireless multi-hop networks by taking the outdated CSI into account and basing compensation on the results of channel prediction. The cross-layer resource allocation is formulated as a network utility maximization problem, which jointly considers congestion control, channel allocation, power control, scheduling and routing with the compensated CSI. Based on a dual decomposition approach, the problem is solved in a distributed manner. Simulation results show that the proposed algorithm can reasonably allocate the resources, and significantly improve the throughput and energy efficiency in the network.

  • Study of Multi-Cell Interference in a 2-Hop OFDMA Virtual Cellular Network

    Gerard J. PARAISON  Eisuke KUDOH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3163-3171

    In the literature, many resource allocation schemes have been proposed for multi-hop networks. However, the analyses provided focus mainly on the single cell case. Inter-cell interference severely degrades the performance of a wireless mobile network. Therefore, incorporating the analysis of inter-cell interference into the study of a scheme is required to more fully understand the performance of that scheme. The authors of this paper have proposed a parallel relaying scheme for a 2-hop OFDMA virtual cellular network (VCN). The purpose of this paper is to study a new version of that scheme which considers a multi-cell environment and evaluate the performance of the VCN. The ergodic channel capacity and outage capacity of the VCN in the presence of inter-cell interference are evaluated, and the results are compared to those of the single hop network (SHN). Furthermore, the effect of the location and number of wireless ports in the VCN on the channel capacity of the VCN is investigated, and the degree of fairness of the VCN relative to that of the SHN is compared. Using computer simulations, it is found that in the presence of inter-cell interference, a) the VCN outperforms the SHN even in the interference dominant transmission power region (when a single cell is considered, the VCN is better than the SHN only in the noise dominant transmission power region), b) the channel capacity of the VCN remains greater than that of the SHN even if the VCN is fully loaded, c) an optimal distance ratio for the location of the wireless ports can be found in the interval 0.2∼0.4, d) increasing the number of wireless ports from 3 to 6 can increase the channel capacity of the VCN, and e) the VCN can achieve better outage capacity than the SHN.

  • Flow Control Scheme Using Adaptive Receiving Opportunity Control for Wireless Multi-Hop Networks

    Atsushi TAKAHASHI  Nobuyoshi KOMURO  Shiro SAKATA  Shigeo SHIODA  Tutomu MURASE  

     
    PAPER

      Vol:
    E95-B No:9
      Page(s):
    2751-2758

    In wireless single-hop networks, IEEE 802.11e Enhanced Distributed Channel Access (EDCA) is the standard for Quality of Service (QoS) control. However, it is necessary for controlling QoS to modify the currently used IEEE 802.11 Distributed Coordination Function (DCF)-compliant terminals as well as Access Points (APs). In addition, it is necessary to modify the parameter of IEEE 802.11e EDCA when the traffic is heavy. This paper proposes a novel scheme to guarantee QoS of high-priority flow with Receiving Opportunity Control in MAC Frame (ROC) employed adaptive flow control in wireless multi-hop network. In the proposed scheme, the edge APs which are directly connected to user terminals estimate the network capacity, and calculate appropriate ACK prevention probability against low-priority flow according to traffic load. Simulation evaluation results show that the proposed scheme guarantees QoS.

  • Generating Realistic Node Mobility and Placement for Wireless Multi-Hop Network Simulation Open Access

    Bratislav MILIC  Miroslaw MALEK  

     
    INVITED PAPER

      Vol:
    E95-B No:9
      Page(s):
    2682-2690

    There exists a considerable number of node placement models and algorithms for simulation of wireless multihop networks. However, the topologies created with the existing algorithms do not have properties of real networks. We have developed NPART (Node Placement Algorithm for Realistic Topologies) in order to resolve this fundamental issue in simulation methodology. We compare topologies generated by NPART with open wireless multihop network in Berlin. The NPART generated topologies have almost identical node degree distribution, number of cut-edges and vertices as the real network. Unlike them, topologies generated with the common node placement models have their own characteristics which are considerably different both from NPART and from reality. NPART algorithm has been developed into a tool. We propose a method and present a tool for integration of NPART with various realistic node mobility algorithms and tools, such as Citymob [1] and MOVE [2]. This integrated tool allows easy and time-efficient generation of highly complex, realistic simulation scenarios. We use the tool to evaluate effects of integration between existing open community wireless multi-hop networks and vehicular ad-hoc networks (VANETs). The evaluation shows that despite partial coverage and peculiar topological properties of open networks, they offer high levels of performance and network availability to the mobile end users, virtually identical to performance and availability of planned, dedicatedly deployed networks. Our results indicate that the integration of these networks may bring considerable benefits to all parties involved.

  • Effect of Power Allocation Schemes on MIMO Two-Way Multi-Hop Network

    Jonghyun LEE  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3362-3370

    Recently, wireless multi-hop network using MIMO two-way relaying technique has been attracted much attention owing to its high network efficiency. It is well known that the MIMO two-way multi-hop network (MTMN) can provide its maximum throughput in uniform topology of node location. However, in realistic environments with non-uniform topology, network capacity degrades severely due to unequal link quality. Furthermore, the end-to-end capacity also degrades at high SNR due to far (overreach) interference existing in multi-hop relay scenarios. In this paper, we focus on several power allocation schemes to improve the end-to-end capacity performance of MTMN with non-uniform topology and far interference. Three conventional power allocation schemes are reformulated and applied under the system model of MTMN. The first two are centralized methods, i.e., Eigenvector based Power Allocation (EPA) which employs linear algebra and Optimal Power Allocation (OPA) using convex optimization. The last one is Distributed Power Allocation (DPA) using game theory. It is found from numerical analyses that the power allocation schemes are effective for MTMN in terms of end-to-end capacity improvement, especially in non-uniform node arrangement and at high SNR.

  • Security Analysis of the Lee-Lee-Kim-Jeong Hybrid Authentication and Key Distribution Scheme

    Haeryong PARK  

     
    LETTER-Network

      Vol:
    E93-B No:4
      Page(s):
    1013-1015

    Lee-Lee-Kim-Jeong proposed a hybrid authentication scheme to alleviate the latent security problems of mobile multi-hop networks. In this letter, we show that the Lee-Lee-Kim-Jeong scheme is insecure against the intercept attack.

  • A Novel Cooperative-Aided Transmission in Multi-Hop Wireless Networks

    Tran Trung DUY  Beongku AN  Hyung-Yun KONG  

     
    LETTER-Network

      Vol:
    E93-B No:3
      Page(s):
    716-720

    Cooperative transmission protocols attract a great deal of attention in recent years as an efficient way to increase the capacity of multi-hop wireless networks in fading environments. In this paper, we propose and analyze a cooperative transmission method, called Cooperative-Aided Skipping multi-Hop protocol (CASH), for multi-hop wireless networks with Rayleigh fading environments. For performance evaluation, we compare and verify the results of the theoretical analysis with the results of simulations.

  • STBC MIMO Network Coding for Bi-directional Multi-Hop Relay Networks

    Fumie ONO  Kei SAKAGUCHI  

     
    PAPER-MIMO Mesh Network

      Vol:
    E92-B No:12
      Page(s):
    3676-3682

    Efficient bi-directional multi-hop wireless networks based on MIMO algorithm or network coding have been proposed in recent papers. This paper proposes a new technique named as MIMO network coding, that is a combination of network coding and MIMO algorithm for multi-hop relay networks. By using MIMO network coding, co-channel interference cancellation and efficient bi-directional transmission can be realized simultaneously with lower complexity in multi-hop networks. Moreover, Space Time Block Code (STBC) MIMO transmission is also introduced to achieve higher reliability in MIMO network coding. It is confirmed from numerical analysis that the MIMO network coding with STBC achieves higher capacity and reliability than conventional schemes.

  • Analysis and Experiments of Maximum Throughput in Wireless Multi-Hop Networks for VoIP Application

    Masahiko INABA  Yoshihiro TSUCHIYA  Hiroo SEKIYA  Shiro SAKATA  Kengo YAGYU  

     
    PAPER-Network

      Vol:
    E92-B No:11
      Page(s):
    3422-3431

    This paper quantitatively analyzes the maximum UDP (User Datagram Protocol) throughput for two-way flows in wireless string multi-hop networks. The validity of the analysis is shown by the comparison with the simulation and the experiment results. The authors also clarify the difference fundamental characteristics between a one-way flow and a two-way flow in detail based on the simulation results. The result shows that collisions at both ends' nodes are decisive in determining the throughput for two-way flows. The analyses are applicable to the estimation of VoIP (Voice over Internet Protocol) capacity for string multi-hop networks represented by WLAN (Wireless Local Area Network) mesh networks.

  • On the Effect of an Invertible Code on Block Undelivered Probability in Cooperative Multi-Hop Relaying Networks

    Katsumi SAKAKIBARA  Jumpei TAKETSUGU  

     
    LETTER-Communication Theory

      Vol:
    E92-A No:10
      Page(s):
    2492-2494

    We propose the use of an invertible code in cooperative multi-hop relaying networks. The effect of the code on the probability that an information block is undelivered to the destination is analyzed at the link level with a simple network topology. Numerical results indicate that significant improvement is feasible by an incorporation of an invertible code, since an information block can be reproduced by correcting channel errors in the received blocks at a relaying node.

  • Analysis of Mean Waiting Time for Delivery of a Message in Mobile Multi-Hop Networks

    Keisuke NAKANO  Kazuyuki MIYAKITA  Akira OTSUKA  Masakazu SENGOKU  Shoji SHINODA  

     
    PAPER-Multi-hop Wireless Network

      Vol:
    E92-A No:9
      Page(s):
    2236-2247

    Analysis of waiting time to deliver a message M from a source S to a destination D is deeply related to connectivity analysis, which is an important issue in fundamental studies of mobile multi-hop networks. In [1], we compared the mean waiting times of two methods to deliver M with the mean value of the minimum waiting time. The mean minimum waiting time was obtained by computer simulation because theoretical analysis of this mean is not easy, although another two methods were analyzed theoretically. In this paper, we propose an approximate method to theoretically analyze the mean minimum waiting time in a one-dimensional street network, and show that this method gives a good approximation of the mean minimum waiting time. Also, we consider shadowing and change of directions of mobile nodes at intersections as negative factors arising in two-dimensional street networks. We extend the above method to compute the mean minimum waiting time considering these factors, and discuss how the mean minimum waiting time is affected by these factors.

1-20hit(34hit)