The search functionality is under construction.

Keyword Search Result

[Keyword] multiple encryption(3hit)

1-3hit
  • A Peer-to-Peer Content-Distribution Scheme Resilient to Key Leakage

    Tatsuyuki MATSUSHITA  Shinji YAMANAKA  Fangming ZHAO  

     
    PAPER-Distributed system

      Pubricized:
    2016/08/25
      Vol:
    E99-D No:12
      Page(s):
    2956-2967

    Peer-to-peer (P2P) networks have attracted increasing attention in the distribution of large-volume and frequently accessed content. In this paper, we mainly consider the problem of key leakage in secure P2P content distribution. In secure content distribution, content is encrypted so that only legitimate users can access the content. Usually, users (peers) cannot be fully trusted in a P2P network because malicious ones might leak their decryption keys. If the redistribution of decryption keys occurs, copyright holders may incur great losses caused by free riders who access content without purchasing it. To decrease the damage caused by the key leakage, the individualization of encrypted content is necessary. The individualization means that a different (set of) decryption key(s) is required for each user to access content. In this paper, we propose a P2P content distribution scheme resilient to the key leakage that achieves the individualization of encrypted content. We show the feasibility of our scheme by conducting a large-scale P2P experiment in a real network.

  • Security of Sequential Multiple Encryption

    Atsushi FUJIOKA  Yoshiaki OKAMOTO  Taiichi SAITO  

     
    PAPER-Public Key Cryptography

      Vol:
    E95-A No:1
      Page(s):
    57-69

    This paper analyzes security of sequential multiple encryptions based on asymmetric key encryptions, and shows that a sequential construction of secure multiple encryptions exists. The sequential multiple encryption scheme can be proved to be indistinguishable against chosen ciphertext attacks for multiple encryptions (IND-ME-CCA), where the adversary can access to the decryption oracle of the multiple encryption, even when all the underlying encryptions of the multiple encryption are indistinguishable against chosen plaintext attacks (IND-CPA). We provide an extended security notion of sequential multiple encryptions, in which the adversary is allowed to access decryption oracles of the underlying encryptions in addition to the multiple encryption, and show that our constructed scheme satisfies the security notion when all the underlying encryptions are indistinguishable against chosen ciphertext attacks (IND-CCA).

  • An Efficient Publicly Verifiable Mix-Net for Long Inputs

    Jun FURUKAWA  Kazue SAKO  

     
    PAPER-Protocols

      Vol:
    E90-A No:1
      Page(s):
    113-127

    We propose here the first efficient publicly verifiable hybrid mix-net. Previous publicly verifiable mix-net was only efficient for short ciphertexts and was not suitable for mixing long messages. Previous hybrid mix-net can mix long messages but did not have public verifiability. The proposed scheme is efficient enough to treat large scale electronic questionnaires of long messages as well as voting with write-ins, and offers public verifiability of the correctness of the tally. The scheme is provably secure if we assume random oracles, semantic security of a one-time symmetric-key cryptosystem, and intractability of decision Diffie-Hellman problem. This paper is the full version of the extended abstract appeared in FC 2006 [10].