The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiple supply voltage(3hit)

1-3hit
  • Floorplan Driven Architecture and High-Level Synthesis Algorithm for Dynamic Multiple Supply Voltages

    Shin-ya ABE  Youhua SHI  Kimiyoshi USAMI  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E96-A No:12
      Page(s):
    2597-2611

    In this paper, we propose an adaptive voltage huddle-based distributed-register architecture (AVHDR architecture), which integrates dynamic multiple supply voltages and interconnection delay into high-level synthesis. In AVHDR architecture, voltages can be dynamically assigned for energy reduction. In other words, low supply voltages are assigned to non-critical operations, and leakage power is cut off by turning off the power supply to the sleeping functional units. Next, an AVHDR-based high-level synthesis algorithm is proposed. Our algorithm is based on iterative improvement of scheduling/binding and floorplanning. In the iteration process, the modules in each huddle can be placed close to each other and the corresponding AVHDR architecture can be generated and optimized with floorplanning information. Experimental results show that on average our algorithm achieves 43.9% energy-saving compared with conventional algorithms.

  • Optimal Supply Voltage Assignment under Timing, Power and Area Constraints

    Hsi-An CHIEN  Cheng-Chiang LIN  Hsin-Hsiung HUANG  Tsai-Ming HSIEH  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:4
      Page(s):
    761-768

    Multiple supply voltage (MSV) assignment is a highly effective means of reducing power consumption. Many existing algorithms perform very well for power reduction. However, they do not handle the area issue of level shifters. In some cases, although one gets a superior result to reduce the power consumption, but many extra level shifters are needed to add so that the circuit area will be over the specification. In this paper, we present an effective integer linear programming (ILP)-based MSV assignment approach to solve two problems with different objectives. For the objective of power reduction under timing constraint, compared with GECVS algorithm, the power consumption obtained by our proposed approach can be further reduced 0 to 5.46% and the number of level shifters is improved 16.31% in average. For the objective of power reduction under constraints of both timing and area of level shifters, the average improvement of power consumption obtained by our algorithm is still better than GECVS while reducing the number of level shifters by 22.92% in average. In addition, given a constraint of total power consumption, our algorithm will generate a design having minimum circuit delay. Experimental results show that the proposed ILP-based MSV assignment algorithm solves different problems flexibly.

  • Level Converting Flip-Flops for High-Speed and Low-Power Applications

    Hyoun Soo PARK  Bong Hyun LEE  Young Hwan KIM  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1740-1743

    This letter presents two high-performance level-converting flip-flops (LCFF) for multi-VDD systems, indirect precharging flip-flop (IPFF) and multi-supply complementary pass-transistor flip-flop (MCPFF). Employing a simple precharging scheme, IPFF provides high operating speed. MCPFF, on the other hand, provides low power operations by implementing the edge-triggering function with complementary pass transistors. Performance comparison indicates that IPFF operates at the highest speed and MCPFF consumes the lowest power among the seven LCFFs under evaluation.