The search functionality is under construction.

Keyword Search Result

[Keyword] multiple-output function(6hit)

1-6hit
  • A Realization of Multiple-Output Functions by a Look-Up Table Ring

    Hui QIN  Tsutomu SASAO  Munehiro MATSUURA  Shinobu NAGAYAMA  Kazuyuki NAKAMURA  Yukihiro IGUCHI  

     
    PAPER-Logic Synthesis

      Vol:
    E87-A No:12
      Page(s):
    3141-3150

    A look-up table (LUT) cascade is a new type of a programmable logic device (PLD) that provides an alternative way to realize multiple-output functions. An LUT ring is an emulator for an LUT cascade. Compared with an LUT cascade, the LUT ring is more flexible. In this paper we discuss the realization of multiple-output functions with the LUT ring. Unlike an FPGA realization of a logic function, accurate prediction of the delay time is easy in an LUT ring realization. A prototype of an LUT ring has been custom-designed with 0.35 µm CMOS technology. Simulation results show that the LUT ring is 80 to 241 times faster than software programs on an SH-1, and 36 to 93 times faster than software programs on a PentiumIII when the frequencies for the LUT ring and the MPUs are the same, but is slightly slower than commercial FPGAs.

  • Bi-Partition of Shared Binary Decision Diagrams

    Munehiro MATSUURA  Tsutomu SASAO  Jon T. BUTLER  Yukihiro IGUCHI  

     
    PAPER-Logic Synthesis

      Vol:
    E85-A No:12
      Page(s):
    2693-2700

    A shared binary decision diagram (SBDD) represents a multiple-output function, where nodes are shared among BDDs representing the various outputs. A partitioned SBDD consists of two or more SBDDs that share nodes. The separate SBDDs are optimized independently, often resulting in a reduction in the number of nodes over a single SBDD. We show a method for partitioning a single SBDD into two parts that reduces the node count. Among the benchmark functions tested, a node reduction of up to 23% is realized.

  • Heuristics to Minimize Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2498-2504

    In this paper, we propose a method to minimize multiple-valued decision diagrams (MDDs) for multiple-output functions. We consider the following: (1) a heuristic for encoding the 2-valued inputs; and (2) a heuristic for ordering the multiple-valued input variables based on sampling, where each sample is a group of outputs. We first generate a 4-valued input 2-valued multiple-output function from the given 2-valued input 2-valued functions. Then, we construct an MDD for each sample and find a good variable ordering. Finally, we generate a variable ordering from the orderings of MDDs representing the samples, and minimize the entire MDDs. Experimental results show that the proposed method is much faster, and for many benchmark functions, it produces MDDs with fewer nodes than sifting. Especially, the proposed method generates much smaller MDDs in a short time for benchmark functions when several 2-valued input variables are grouped to form multiple-valued variables.

  • Representations of Multiple-Output Functions Using Binary Decision Diagrams for Characteristic Functions

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2398-2406

    This paper proposes a method to construct smaller binary decision diagrams for characteristic functions (BDDs for CFs). A BDD for CF represents an n-input m-output function, and evaluates all the outputs in O(n+m) time. We derive an upper bound on the number of nodes of the BDD for CF of n-bit adders (adrn). We also compare complexities of BDDs for CFs with those of shared binary decision diagrams (SBDDs) and multi-terminal binary decision diagrams (MTBDDs). Our experimental results show: 1) BDDs for CFs are usually much smaller than MTBDDs; 2) for adrn and for some benchmark circuits, BDDs for CFs are the smallest among the three types of BDDs; and 3) the proposed method often produces smaller BDDs for CFs than an existing method.

  • Time-Division Multiplexing Realizations of Multiple-Output Functions Based on Shared Multi-Terminal Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E82-D No:5
      Page(s):
    925-932

    This paper considers methods to design multiple-output networks based on decision diagrams (DDs). TDM (time-division multiplexing) systems transmit several signals on a single line. These methods reduce: 1) hardware; 2) logic levels; and 3) pins. In the TDM realizations, we consider three types of DDs: shared binary decision digrams (SBDDs), shared multiple-valued decision diagrams (SMDDs), and shared multi-terminal multiple-valued decision diagrams (SMTMDDs). In the network, each non-terminal node of a DD is realized by a multiplexer (MUX). We propose heuristic algorithms to derive SMTMDDs from SBDDs. We compare the number of non-terminal nodes in SBDDs, SMDDs, and SMTMDDs. For nrm n, log n, and for many other benchmark functions, SMTMDD-based realizations are more economical than other ones, where nrm n is a (2n)-input (n1)-output function computing (X2+Y2)+0.5, log n is an n-input n-output function computing (2n1)log(x1)/nlog2, and a denotes the largest integer not greater than a.

  • Shared Multi-Terminal Binary Decision Diagrams for Multiple-Output Functions

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Synthesis

      Vol:
    E81-A No:12
      Page(s):
    2545-2553

    This paper describes a method to represent m output functions using shared multi-terminal binary decision diagrams (SMTBDDs). The SMTBDD(k) consists of multi-terminal binary decision diagrams (MTBDDs), where each MTBDD represents k output functions. An SMTBDD(k) is the generalization of shared binary decision diagrams (SBDDs) and MTBDDs: for k=1, it is an SBDD, and for k=m, it is an MTBDD. The size of a BDD is the total number of nodes. The features of SMTBDD(k)s are: 1) they are often smaller than SBDDs or MTBDDs; and 2) they evaluate k outputs simultaneously. We also propose an algorithm for grouping output functions to reduce the size of SMTBDD(k)s. Experimental results show the compactness of SMTBDD(k)s. An SMTBDDmin denotes the smaller SMTBDD which is either an SMTBDD(2) or an SMTBDD(3) with fewer nodes. The average relative sizes for SBDDs, MTBDDs, and SMTBDDs are 1. 00, 152. 73, and 0. 80, respectively.