The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] near-field exposure(2hit)

1-2hit
  • FDTD Analysis of Electromagnetic Interaction between Portable Telephone and Human Head

    Masao TAKI  So-ichi WATANABE  Toshio NOJIMA  

     
    INVITED PAPER

      Vol:
    E79-C No:10
      Page(s):
    1300-1307

    Finite-difference time-domain (FDTD) analysis is performed to evaluate the distributions of specific absorption rate (SAR) in a human head during use of a handheld portable telephone. A heterogeneous head model has been assumed which is comprised of 273 108 cubic cells 2.5 mm on a side, with the electrical properties of anatomical equivalents. A handset model has been assumed to be a metal box with either a quarter-wavelength monopole or a half-wavelength dipole operating at 900 MHz or 1.5 GHz. The maximum local SARs in the head are evaluated under various exposure conditions. The dependence of the maximum local SARs on the difference in the structures or parameters of the model, i.e. the distance between the antenna and the head, the heterogeneity of the head, the antenna type, the volume of the smoothing region of the local SAR value, skin electrical constants, and the presence or absence of auricles, are examined. It is shown that the heterogeneity of the head barely affect the maximum local SAR when the telephone is located sufficiently close to the head. It is also shown that the electrical constants of skin which has lower conductivity provide the lower maximum local SAR in the head while the maximum local SAR within the brain is not significantly affected. The auricle which lies in closest proximity to the antenna is shown to have significant effect on the maximum local SAR. It is suggested that the presence of the auricle enhances the maximum local SAR by a factor that is 1.7-2.4 larger than the model without auricles.

  • Frequency Characteristics of Energy Deposition in Human Model Exposed to Near Field of an Electric or a Magnetic Dipole

    Soichi WATANABE  Masao TAKI  Yoshitsugu KAMIMURA  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    725-731

    The frequency characteristics of whole-body averaged specific absorption rates (SARs) in a human model exposed to a near field of an electric dipole or a magnetic dipole are calculated, using a finite-difference time-domain method. The dependences of the characteristics on the orientation of the dipole and on the distance from the source to the model are investigated. It is shown that the resonant peak of the SAR that appears in the E-polarized far-field exposure is observed only when the source is E-polarized and is located at 80cm, while the peak vanishes or is not noted when the source is located at 40cm and 20cm nor when it is H-polarized. The relationships between the whole-body averaged SARs and the incident electromagnetic field strengths are also investigated. It is suggested that the spatially-averaged value of the dominating component between the electric field and the magnetic field over the space where a human body would occupy provides a relevant measure to estimate the whole-body averaged SAR of a body in the vicinity of a small radiation source.