1-13hit |
The SAR distributions over a homogeneous human model exposed to a near field of a short electric dipole in the resonant frequency region were calculated with the spatial resolution of 1cm3 which approximated 1g tissue by using the FDTD method with the expansion technique. The dependences of the SAR distribution on the distance between the model and the source and on frequency were investigated. It was shown that the large local SAR appeared in the parts of the body nearest to the source when the source was located at 20cm from the body, whereas the local SAR were largest in the narrow sections such as the neck and legs when the source was farther than 80cm from the model. It was also shown that, for the near-field exposure in the resonant frequency region, the profile of the layer averaged SAR distribution along the main axis of the body of the human model depended little on frequency, and that the SAR distribution in the section perpendicular to the main axis of the human body depended on frequency. The maximum local SAR per gram tissue over the whole body model was also determined, showing that the ratios of the maximum local SAR to the whole-body averaged SAR for the near-field exposure were at most several times as large as the corresponding ratio for the far-field exposure, when the small source located farther than 20cm from the surface of the human model.
Takuya AOKI Tatsuya MORISHITA Toshiyuki TANAKA Masao TAKI
The application of an active noise control system in a finite-length duct is studied. Previously proposed single-input-single-output systems are inappropriate in this case, because reflection at the terminals degrades the performance, and/or infinite-impulse-response filters are required for perfect noise cancellation. In this paper, we propose a single-input-single-output system applicable to finite-length ducts, which theoretically achieves perfect noise cancellation while using finite-impulse-response filters only. The tap lengths of the filters are as short as the delays between the reference sensor and the secondary source. A useful implementation of the proposed system is also discussed.
Haruhiro TERADA Fumio KITAGAWA Nobuo OKAMOTO Soichi WATANABE Masao TAKI Masao SAITO
This paper presents an analysis of the dose rate in tissue irradiated by an electromagnetic near field of a circular loop antenna. An analytical model comprised of a circular loop antenna located in the vicinity of the semi-infinite plane of a homogeneous biological medium was formulated. A quasi-static hypothesis was not introduced. The theoretical formulation was rigorously developed based on Maxwell equations which used an electric vector potential, cylindrical coordinates and a Hankel transform. The internal electric field E and the specific absorption rate (SAR) were adopted as indices for the dose in the tissue. This formulation was applied to the dosimetry of a high-frequency therapeutic device (HFTD) and experiment of irradiation to a frog web. The frequency of the applied electro-magnetic fields (EMF) was 9-10MHz. The distance between the antenna and tissue was 2.0-3.2mm. The dose of HFTD were 0.75V/m and 0.35mW/kg, respectively. The dose of experiment of the irradiation to a frog web were 0.42-2.08V/m and 0.11-2.69mW/kg, respectively. The SAR values obtained by this analysis were small enough to conclude that the effects were non-thermal. The calculated SARs of these experiments were compared with estimated SARs in experiments on calcium efflux change due to a weak modulated RF field. All were found to be of the same order of magnitude.
Masao TAKI So-ichi WATANABE Toshio NOJIMA
Finite-difference time-domain (FDTD) analysis is performed to evaluate the distributions of specific absorption rate (SAR) in a human head during use of a handheld portable telephone. A heterogeneous head model has been assumed which is comprised of 273 108 cubic cells 2.5 mm on a side, with the electrical properties of anatomical equivalents. A handset model has been assumed to be a metal box with either a quarter-wavelength monopole or a half-wavelength dipole operating at 900 MHz or 1.5 GHz. The maximum local SARs in the head are evaluated under various exposure conditions. The dependence of the maximum local SARs on the difference in the structures or parameters of the model, i.e. the distance between the antenna and the head, the heterogeneity of the head, the antenna type, the volume of the smoothing region of the local SAR value, skin electrical constants, and the presence or absence of auricles, are examined. It is shown that the heterogeneity of the head barely affect the maximum local SAR when the telephone is located sufficiently close to the head. It is also shown that the electrical constants of skin which has lower conductivity provide the lower maximum local SAR in the head while the maximum local SAR within the brain is not significantly affected. The auricle which lies in closest proximity to the antenna is shown to have significant effect on the maximum local SAR. It is suggested that the presence of the auricle enhances the maximum local SAR by a factor that is 1.7-2.4 larger than the model without auricles.
Nadege VARSIER Kanako WAKE Masao TAKI Soichi WATANABE
We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.
Yoji NAGASAWA Kunio SAWAYA Yoshio KAMI Kohji KOSHIJI Youji KOTSUKA Takashi SHINOZUKA Masao TAKI Toshio NOJIMA
Takashi IWASAKI Nobuo KUWABARA Masao TAKI Noboru SCHIBUYA Osamu HASHIMOTO Osami WADA Takashi HARADA Yukio YAMANAKA
Tadashi FUSE Masao TAKI Osamu YOKORO
This paper presents an experimental study on the penetration characteristics of submillimeter waves in biological tissues and material. The measured values of the penetration depth in excised natural muscle, fat, and aqueous solution of protein, bovine serum albumin (BSA), over the wavelengths of 281 through 496µm are presented. Penetration depths at these wavelengths are 0.11-0.17mm in the natural pork muscle, and 0.69-0.98mm in the natural pork fat, and are the larger at the longer wavelengths. The values vary considerably from sample to sample. Since the measurement of the penetration depth in this study is shown sufficiently reproducible, the variation of the measured penetration depth is attributed to the variation of natural tissues such as that in water content. It is found that the penetration depth of submillimeter waves in aqueous solution of BSA depends almost linearly on the amount of protein content in the solution, and that the typical values of the penetration depth in the natural muscle roughly agree with that in the 35% aqueous solution of BSA in the submillimeter-wave region.
Shoji MOCHIZUKI Soichi WATANABE Masao TAKI Yukio YAMANAKA Hiroshi SHIRAI
A new hybrid formulation has been derived for analyzing biological electromagnetic compatibility (Bio-EMC) problems by combining the frequency-domain Method of Moments (MoM) and the Finite-Difference Time-Domain (FDTD) method. This hybrid form is different from, and more direct than, the method previously proposed by Mangoud et al. Some numerical examples are given for the human head exposure field due to a half wavelength dipole and a one-wavelength loop antenna. Our iterative method is found to have fast convergence. In addition, our method works well for cases when the radiation antenna wires are not aligned with the FDTD lattice.
Tomohide SONODA Rui TOKUNAGA Koichi SETO Yukihisa SUZUKI Kanako WAKE Soichi WATANABE Masao TAKI
In this paper, dosimetry of an in vitro exposure apparatus based on a cylindrical waveguide is performed. The SAR distributions are first obtained numerically by using FDTD method. The thermal fields in the medium are then estimated by numerical calculations of the equation of heat conduction. The maximum temperature rise for 17.9 W/kg average SAR during 3000 s exposure is about 2 on the bottom of the medium where cells are located. The thermal distribution is relatively uniform near the center of the dish and the temperature in this region is around 38.7. The results of the numerical calculation are experimentally supported. The results provide the electromagnetic and thermal characteristics of the exposure apparatus, which will define the exposure conditions of the planned experiments using this apparatus.
Soichi WATANABE Masao TAKI Yoshitsugu KAMIMURA
The frequency characteristics of whole-body averaged specific absorption rates (SARs) in a human model exposed to a near field of an electric dipole or a magnetic dipole are calculated, using a finite-difference time-domain method. The dependences of the characteristics on the orientation of the dipole and on the distance from the source to the model are investigated. It is shown that the resonant peak of the SAR that appears in the E-polarized far-field exposure is observed only when the source is E-polarized and is located at 80cm, while the peak vanishes or is not noted when the source is located at 40cm and 20cm nor when it is H-polarized. The relationships between the whole-body averaged SARs and the incident electromagnetic field strengths are also investigated. It is suggested that the spatially-averaged value of the dominating component between the electric field and the magnetic field over the space where a human body would occupy provides a relevant measure to estimate the whole-body averaged SAR of a body in the vicinity of a small radiation source.
The induced voltage at the terminals of an implantable cardiac pacemaker of unipolar type was investigated by numerical calculations. Operating frequency was assumed 5 MHz according to a recent product. The dependencies of the induced voltage on various conditions were investigated including those on the locations of the transmitter and the pacemaker, and on the electric properties and the size of the phantom. The results showed that they were reasonably explained by considerations of quasi-static coupling of the electric field between the device and the pacemaker. Regarding the effect of electrical properties of the phantom a conservative result was obtained by using a phantom of homogeneous material with electric constants of fat. With regard to the phantom size the phantom used in previous studies provided more conservative results than that of larger size. The results suggested that the electric near-field intra-body communication devices are not likely to interfere with implantable cardiac pacemakers as far as the situation assumed in this study.
Toshiyuki TANAKA Hideki KURIYAMA Yoshiko OCHIAI Masao TAKI
Neural networks can be used as associative memories which can learn problems of acquiring input-output relations presented by examples. The learning time problem addresses how long it takes for a neural network to learn a given problem by a learning algorithm. As a solvable model to this problem we analyze the learning dynamics of the linear associative memoty with the least-mean-square algorithm. Our result shows that the learning time τ of the linear associative memory diverges in τ (1-ρ)-2 as the memory rate ρ approaches 1. It also shows that the learning time exhibits the exponential dependence on ρ when ρ is small.