1-3hit |
Takanori EMARU Takeshi TSUCHIYA
In our previous research, we proposed a nonlinear digital filter to Estimate the Smoothed and Differential values of the sensor inputs by using Sliding mode system (ESDS). This estimator is able to eliminate impulsive noise efficiently from time series data. We applied this filter to processing outputs of robot sensors, and it became possible to perform robust environment recognition. ESDS is designed using a theory of variable structure system (VSS) with sliding mode. In short, ESDS is a nonlinear filter. Therefore, it is very difficult to clarify the behavior of the system analytically. Consequentially, we deal with the step function with impulsive noise as an example, and we attempt to eliminate this impulsive noise by keeping the sudden shift of signals. In this case, there is a trade-off between the noise elimination ability and the tracking performance for an input signal. Although ESDS is a nonlinear filter, it has the same trade-off as linear filters such as a low-pass filter. In order to satisfy these two conditions simultaneously, we use two filters whose parameters are independent of each other. Furthermore, in order to repress the adverse affect of impulsive noise in the steady-state, we introduced the boundary layer. Generally, a boundary layer is used so as to inhibit the harmful effect of chattering. Chattering is caused in the sliding mode system when the state of the system vibrates on the switching line of a sliding mode system. By introducing the boundary layer to ESDS, we can repress the adverse effect of impulsive noise in the steady-state. According to these considerations, we clarify the relationship between these characteristics of ESDS and the arbitrary parameters.
Hisato FUJISAKA Yuji HIDAKA Singo KAJITA Mititada MORISUE
Piecewise linear (PWL) circuit modules operating on sigma-delta (ΣΔ) modulated signals and nonlinear signal processors built of these modules are proposed. The proposed module library includes absolute circuits, min/max selectors and negative resistances. Their output signal-to-noise ratio is higher than 50dB when their oversampling ratio is 28. A nonlinear filter and a stochastic resonator are presented as applications of the PWL modules to ΣΔ domain signal processing. The filter is structured with 37% of logic gates consumed by an equivalent filter with a 5-bit parallel signal form.
Masahiko HIRATSUKA Takafumi AOKI Tatsuo HIGUCHI
This paper explores a possibility of constructing massively parallel molecular computing systems using molecular electronic devices called enzyme transistors. The enzyme transistor is, in a sense, an artificial catalyst which selects a specific substrate molecule and transforms it into a specific product. Using this primitive function, various active continuous media for signal transfer/processing can be realized. Prominent examples discussed in this paper are: (i) Turing pattern formation and (ii) excitable wave propagation in a two-dimensional enzyme transistor array. This paper demonstrates the potential of enzyme transistors for creating reaction-diffusion dynamics that performs useful computations in a massively parallel fashion.