The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] nonmonotonic neuron(3hit)

1-3hit
  • Implementation of Continuous-Time Dynamics on Stochastic Neurochip

    Shunsuke AKIMOTO  Akiyoshi MOMOI  Shigeo SATO  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E87-A No:9
      Page(s):
    2227-2232

    The hardware implementation of a neural network model using stochastic logic has been able to integrate numerous neuron units on a chip. However, the limitation of applications occurred since the stochastic neurosystem could execute only discrete-time dynamics. We have contrived a neuron model with continuous-time dynamics by using stochastic calculations. In this paper, we propose the circuit design of a new neuron circuit, and show the fabricated neurochip comprising 64 neurons with experimental results. Furthermore, a new asynchronous updating method and a new activation function circuit are proposed. These improvements enhance the performance of the neurochip greatly.

  • Associative Memory Model with Forgetting Process Using Nonmonotonic Neurons

    Kazushi MIMURA  Masato OKADA  Koji KURATA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:11
      Page(s):
    1298-1304

    An associative memory model with a forgetting process a la Mezard et al. is investigated for a piecewise nonmonotonic output function by the SCSNA proposed by Shiino and Fukai. Similar to the formal monotonic two-state model analyzed by Mezard et al. , the discussed nonmonotonic model is also free from a catastrophic deterioration of memory due to overloading. We theoretically obtain a relationship between the storage capacity and the forgetting rate, and find that there is an optimal value of forgetting rate, at which the storage capacity is maximized for the given nonmonotonicity. The maximal storage capacity and capacity ratio (a ratio of the storage capacity for the conventional correlation learning rule to the maximal storage capacity) increase with nonmonotonicity, whereas the optimal forgetting rate decreases with nonmonotonicity.

  • Robustness to Noise of Associative Memory Using Nonmonotonic Analogue Neurons

    Kazushi MIMURA  Masato OKADA  Koji KURATA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:8
      Page(s):
    928-932

    In this paper, dependence of storage capacity of an analogue associative memory model using nonmonotonic neurons on static synaptic noise and static threshold noise is shown. This dependence is analytically calculated by means of the self-consistent signal-to-noise analysis (SCSNA) proposed by Shiino and Fukai. It is known that the storage capacity of an associative memory model can be improved markedly by replacing the usual sigmoid neurons with nonmonotonic ones, and the Hopfield model has theoretically been shown to be fairly robust against introducing the static synaptic noise. In this paper, it is shown that when the monotonicity of neuron is high, the storage capacity decreases rapidly according to an increase of the static synaptic noise. It is also shown that the reduction of the storage capacity is more sensitive to an increase in the static threshold noise than to the increase in the static synaptic noise.