The search functionality is under construction.

Keyword Search Result

[Keyword] on-chip battery(2hit)

1-2hit
  • Wireless Sensor Chip Platform Using On-Chip Electrochromic Micro Display

    Takashiro TSUKAMOTO  Yanjun ZHU  Shuji TANAKA  

     
    INVITED PAPER

      Vol:
    E101-C No:11
      Page(s):
    870-873

    In this paper, a proof-of-concept sensor platform for an all-in-one wireless bio sensor chip was developed and evaluated. An on-chip battery, an on-chip electrochromic display (ECD), a micro processor, a voltage converter and analog switches were implemented on a printed circuit board. Instead of bio-sensor, a temperature sensor was used to evaluate the functionality of the platform. The platform successfully worked in an electrolyte and the encoded measurement result was displayed on the ECD. The displayed data was captured by a CMOS digital camera and the measured data could be successfully decoded by a computer program.

  • Electric-Energy Generation through Variable-Capacitive Resonator for Power-Free LSI

    Masayuki MIYAZAKI  Hidetoshi TANAKA  Goichi ONO  Tomohiro NAGANO  Norio OHKUBO  Takayuki KAWAHARA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    549-555

    A vibration-to-electric energy converter as a power generator through a variable-resonating capacitor is theoretically and experimentally demonstrated as a potential on-chip battery. The converter is constructed from three components: a mechanical-variable capacitor, a charge-transporter circuit and a timing-capture control circuit. An optimum design methodology is theoretically described to maximize the efficiency of the vibration-to-electric energy conversion. The energy-conversion efficiency is analyzed based on the following three factors: the mechanical-energy to electric-energy conversion loss, the parasitic elements loss in the charge-transporter circuit and the timing error in the timing-capture circuit. Through the mechanical-energy conversion analysis, the optimum condition for the resonance is found. The parasitic elements in the charge-transporter circuit and the timing management of the capture circuit dominate the output energy efficiency. These analyses enable the optimum design of the energy-conversion system. The converter is fabricated experimentally. The practical measured power is 0.12 µW, and the conversion efficiency is 21%. This efficiency is calculated from a 43% mechanical-energy conversion loss and a 63% charge-transportation loss. The timing-capture circuit is manually controlled in this experiment, so that the timing error is not considered in the efficiency. From our result, a new system LSI application with an embedded power source can be explored for the ubiquitous computing world.