The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Goichi ONO(7hit)

1-7hit
  • 0.7-GHz-Bandwidth DS-UWB-IR System for Low-Power Wireless Communications

    Ryosuke FUJIWARA  Akira MAEKI  Kenichi MIZUGAKI  Goichi ONO  Tatsuo NAKAGAWA  Takayasu NORIMATSU  Masaru KOKUBO  Masayuki MIYAZAKI  Yasuyuki OKUMA  Miki HAYAKAWA  Shinsuke KOBAYASHI  Noboru KOSHIZUKA  Ken SAKAMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    518-526

    A direct-sequence ultra-wideband impulse radio (DS-UWB-IR) system is developed for low-power wireless applications such as wireless sensor networks. This system adopts impulse radio characterized by a low duty cycle, and a direct-sequence 0.7-GHz bandwidth, which enables low-power operation and extremely precise positioning. Simulation results reveal that the system achieves a 250-kbps data rate for 30-m-distance wireless communications using realistic specifications. We also conduct an experiment that confirms the feasibility of our system.

  • Accurate TOA Estimating UWB-IR Transceiver for Ranging System in Multi-Path Environment

    Ryosuke FUJIWARA  Kenichi MIZUGAKI  Goichi ONO  Tatsuo NAKAGAWA  Takayasu NORIMATSU  Takahide TERADA  Akira MAEKI  Masayuki MIYAZAKI  

     
    PAPER-Sensing

      Vol:
    E94-B No:3
      Page(s):
    777-785

    In this work, an ultra-wideband impulse radio (UWB-IR) transceiver with accurate time-of-arrival (TOA) estimation for a ranging/positioning system was developed for wireless sensor network applications. The system uses an impulse radio characterized by a low duty cycle and direct-sequence spreading, which enable very precise ranging and good receiver sensitivity. An algorithm enabling the TOA of the first-path signal to be measured accurately in a multi-path environment with simple, low-power and low cost implementations was proposed. UWB chips with CMOS 0.18-µm technology and UWB transceiver modules performed that the accuracy of the proposed ranging system is 18.5 cm in a closed space.

  • 1-GHz Input Bandwidth Under-Sampling A/D Converter with Dynamic Current Reduction Comparator for UWB-IR Receiver

    Tatsuo NAKAGAWA  Tatsuji MATSUURA  Eiki IMAIZUMI  Junya KUDOH  Goichi ONO  Masayuki MIYAZAKI  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    835-842

    A 1-GHz input bandwidth analog-to-digital (A/D) converter for an ultra-wideband impulse radio (UWB-IR) receiver is developed. Both an under-sampling sample-and-hold (S/H) circuit and a dynamic current-reduction comparator are proposed for the A/D converter. An under-sampling S/H circuit, which digitizes an input signal at a higher frequency than the sampling frequency with low power consumption, is required because the UWB-IR system utilizes intermittent ultrashort impulses. The proposed S/H circuit executes sampling by separating a sampling capacitor from an operational amplifier and accumulating the offset voltage of the amplifier in the other capacitor. The proposed dynamic current reduction comparator reduces bias current dynamically corresponding to its input-voltage level. The A/D converter is implemented in a 0.18-µm CMOS process technology, which achieves an effective number of bits of 5.5, 5.4, and 4.9 for input signals with frequencies of 1, 513, and 1057 MHz, respectively, at 32 M samples/s. The converter consumes 0.89 mA and 0.42 mA in the analog and digital component, respectively, at a 1.8-V supply.

  • Electric-Energy Generation through Variable-Capacitive Resonator for Power-Free LSI

    Masayuki MIYAZAKI  Hidetoshi TANAKA  Goichi ONO  Tomohiro NAGANO  Norio OHKUBO  Takayuki KAWAHARA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    549-555

    A vibration-to-electric energy converter as a power generator through a variable-resonating capacitor is theoretically and experimentally demonstrated as a potential on-chip battery. The converter is constructed from three components: a mechanical-variable capacitor, a charge-transporter circuit and a timing-capture control circuit. An optimum design methodology is theoretically described to maximize the efficiency of the vibration-to-electric energy conversion. The energy-conversion efficiency is analyzed based on the following three factors: the mechanical-energy to electric-energy conversion loss, the parasitic elements loss in the charge-transporter circuit and the timing error in the timing-capture circuit. Through the mechanical-energy conversion analysis, the optimum condition for the resonance is found. The parasitic elements in the charge-transporter circuit and the timing management of the capture circuit dominate the output energy efficiency. These analyses enable the optimum design of the energy-conversion system. The converter is fabricated experimentally. The practical measured power is 0.12 µW, and the conversion efficiency is 21%. This efficiency is calculated from a 43% mechanical-energy conversion loss and a 63% charge-transportation loss. The timing-capture circuit is manually controlled in this experiment, so that the timing error is not considered in the efficiency. From our result, a new system LSI application with an embedded power source can be explored for the ubiquitous computing world.

  • Edge Device Verification Techniques for Updated Object Detection AI via Target Object Existence Open Access

    Akira KITAYAMA  Goichi ONO  Hiroaki ITO  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/12/20
      Vol:
    E107-A No:8
      Page(s):
    1286-1295

    Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.

  • Low-Power Implementation Techniques for Convolutional Neural Networks Using Precise and Active Skipping Methods Open Access

    Akira KITAYAMA  Goichi ONO  Tadashi KISHIMOTO  Hiroaki ITO  Naohiro KOHMU  

     
    PAPER

      Pubricized:
    2020/12/22
      Vol:
    E104-C No:7
      Page(s):
    330-337

    Reducing power consumption is crucial for edge devices using convolutional neural network (CNN). The zero-skipping approach for CNNs is a processing technique widely known for its relatively low power consumption and high speed. This approach stops multiplication and accumulation (MAC) when the multiplication results of the input data and weight are zero. However, this technique requires large logic circuits with around 5% overhead, and the average rate of MAC stopping is approximately 30%. In this paper, we propose a precise zero-skipping method that uses input data and simple logic circuits to stop multipliers and accumulators precisely. We also propose an active data-skipping method to further reduce power consumption by slightly degrading recognition accuracy. In this method, each multiplier and accumulator are stopped by using small values (e.g., 1, 2) as input. We implemented single shot multi-box detector 500 (SSD500) network model on a Xilinx ZU9 and applied our proposed techniques. We verified that operations were stopped at a rate of 49.1%, recognition accuracy was degraded by 0.29%, power consumption was reduced from 9.2 to 4.4 W (-52.3%), and circuit overhead was reduced from 5.1 to 2.7% (-45.9%). The proposed techniques were determined to be effective for lowering the power consumption of CNN-based edge devices such as FPGA.

  • A Method for Measuring of RTN by Boosting Word-Line Voltage in 6-Tr-SRAMs

    Goichi ONO  Yuki MORI  Michiaki NAKAYAMA  Yusuke KANNO  

     
    PAPER-Integrated Electronics

      Vol:
    E97-C No:3
      Page(s):
    215-221

    In order to analyze an impact of threshold voltage (Vth) fluctuation induced by random telegraph noise (RTN) on LSI circuit design, we measured a 40-nm 6-Tr-SRAM TEG which enables to evaluate individual bit-line current. RTN phenomenon was successfully measured and we also identified that the transfer MOSFET in an SRAM bit-cell was the most sensitive MOSFET. The proposed word line boosting technique, which applies slightly extra stress to the transfer MOSFET, improves about 30% of detecting probability of fail-bit cells caused by RTN.