1-3hit |
Hiroaki ITOGA Chikaaki KODAMA Kunihiro FUJIYOSHI
In the VLSI layout design, a floorplan is often obtained to define rough arrangement of modules in the early design stage. In the stage, the aspect ratio of each soft module is also determined. The aspect ratio can be changed in the designated range keeping its area of each module. In this paper, in order to determine the aspect ratio, we propose a graph-based one dimensional compaction method which determines the aspect ratio quickly under the constraint that topology of a floorplan must not be changed. The proposed method is divided into two steps: (1) Selection of a minimal set of soft modules to adjust the aspect ratio. (2) Decision on the aspect ratio. (1) is formulated as the minimal cut problem in graph theory. We solve the problem by transforming it to the shortest path problem. (2) is divided into two operations. One is to determine the increment limit in height or width of each soft module and the other is to determine the aspect ratio of each soft module by Newton-Raphson method. The experimental comparisons show effectiveness of the proposed method.
Akira KITAYAMA Goichi ONO Tadashi KISHIMOTO Hiroaki ITO Naohiro KOHMU
Reducing power consumption is crucial for edge devices using convolutional neural network (CNN). The zero-skipping approach for CNNs is a processing technique widely known for its relatively low power consumption and high speed. This approach stops multiplication and accumulation (MAC) when the multiplication results of the input data and weight are zero. However, this technique requires large logic circuits with around 5% overhead, and the average rate of MAC stopping is approximately 30%. In this paper, we propose a precise zero-skipping method that uses input data and simple logic circuits to stop multipliers and accumulators precisely. We also propose an active data-skipping method to further reduce power consumption by slightly degrading recognition accuracy. In this method, each multiplier and accumulator are stopped by using small values (e.g., 1, 2) as input. We implemented single shot multi-box detector 500 (SSD500) network model on a Xilinx ZU9 and applied our proposed techniques. We verified that operations were stopped at a rate of 49.1%, recognition accuracy was degraded by 0.29%, power consumption was reduced from 9.2 to 4.4 W (-52.3%), and circuit overhead was reduced from 5.1 to 2.7% (-45.9%). The proposed techniques were determined to be effective for lowering the power consumption of CNN-based edge devices such as FPGA.
Akira KITAYAMA Goichi ONO Hiroaki ITO
Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.