The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yusuke KANNO(3hit)

1-3hit
  • µI/O Architecture: A Power-Aware Interconnect Circuit Design for SoC and SiP

    Yusuke KANNO  Hiroyuki MIZUNO  Nobuhiro OODAIRA  Yoshihiko YASU  Kazumasa YANAGISAWA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    589-597

    A power-aware interconnect circuit design--called µI/O architecture--has been developed to provide low-cost system solutions for System-on-Chip (SoC) and System-in-Package (SiP) technologies. The µI/O architecture provides a common interface throughout the module enabling hierarchical I/O design for SoC and SiP. The hierarchical I/O design allows the driver size to be optimized without increasing design complexity. Moreover, it includes a signal-level converter for integrating wide-voltage-range circuit blocks and a signal wall function for turning off each block independently--without invalid signal transmission--by using an internal power switch.

  • Soft-Error-Tolerant Dual-Modular-Redundancy Architecture with Repair and Retry Scheme for Memory-Control Circuit on FPGA

    Makoto SAEN  Tadanobu TOBA  Yusuke KANNO  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    382-390

    This paper presents a soft-error-tolerant memory-control circuit for SRAM-based field programmable gate arrays (FPGAs). A potential obstacle to applying such FPGAs to safety-critical industrial control systems is their low tolerance. The main reason is that soft errors damage circuit-configuration data stored in SRAM-based configuration memory. To overcome this obstacle, the soft-error tolerance must thus be improved while suppressing the circuit area overhead, and data stored in external memory must be protected when a fault occurs on the FPGA. Therefore, a memory-control circuit was developed on the basis of a dual-modular-redundancy (DMR) architecture. This memory controller has a repair and retry scheme that repairs damaged circuit-configuration data and re-executes unfinished accesses after the repair. The developed architecture reduces circuit redundancy below that of a commonly used triple-modular-redundancy (TMR) architecture. Moreover, a write-invalidation circuit was developed to protect data in external memory, and an external-memory-state recovery circuit was developed to enable resumption of memory access after fault repair. The developed memory controller was implemented in a prototype circuit on an FPGA and evaluated using the prototype. The evaluation results demonstrated that the developed memory controller can operate successfully for 1.03×109 hours (at sea level). In addition, its circuit area overhead was found to be sufficiently smaller than that of the TMR architecture.

  • A Method for Measuring of RTN by Boosting Word-Line Voltage in 6-Tr-SRAMs

    Goichi ONO  Yuki MORI  Michiaki NAKAYAMA  Yusuke KANNO  

     
    PAPER-Integrated Electronics

      Vol:
    E97-C No:3
      Page(s):
    215-221

    In order to analyze an impact of threshold voltage (Vth) fluctuation induced by random telegraph noise (RTN) on LSI circuit design, we measured a 40-nm 6-Tr-SRAM TEG which enables to evaluate individual bit-line current. RTN phenomenon was successfully measured and we also identified that the transfer MOSFET in an SRAM bit-cell was the most sensitive MOSFET. The proposed word line boosting technique, which applies slightly extra stress to the transfer MOSFET, improves about 30% of detecting probability of fail-bit cells caused by RTN.