1-3hit |
Yusuke KANNO Hiroyuki MIZUNO Nobuhiro OODAIRA Yoshihiko YASU Kazumasa YANAGISAWA
A power-aware interconnect circuit design--called µI/O architecture--has been developed to provide low-cost system solutions for System-on-Chip (SoC) and System-in-Package (SiP) technologies. The µI/O architecture provides a common interface throughout the module enabling hierarchical I/O design for SoC and SiP. The hierarchical I/O design allows the driver size to be optimized without increasing design complexity. Moreover, it includes a signal-level converter for integrating wide-voltage-range circuit blocks and a signal wall function for turning off each block independently--without invalid signal transmission--by using an internal power switch.
Makoto SAEN Tadanobu TOBA Yusuke KANNO
This paper presents a soft-error-tolerant memory-control circuit for SRAM-based field programmable gate arrays (FPGAs). A potential obstacle to applying such FPGAs to safety-critical industrial control systems is their low tolerance. The main reason is that soft errors damage circuit-configuration data stored in SRAM-based configuration memory. To overcome this obstacle, the soft-error tolerance must thus be improved while suppressing the circuit area overhead, and data stored in external memory must be protected when a fault occurs on the FPGA. Therefore, a memory-control circuit was developed on the basis of a dual-modular-redundancy (DMR) architecture. This memory controller has a repair and retry scheme that repairs damaged circuit-configuration data and re-executes unfinished accesses after the repair. The developed architecture reduces circuit redundancy below that of a commonly used triple-modular-redundancy (TMR) architecture. Moreover, a write-invalidation circuit was developed to protect data in external memory, and an external-memory-state recovery circuit was developed to enable resumption of memory access after fault repair. The developed memory controller was implemented in a prototype circuit on an FPGA and evaluated using the prototype. The evaluation results demonstrated that the developed memory controller can operate successfully for 1.03×109 hours (at sea level). In addition, its circuit area overhead was found to be sufficiently smaller than that of the TMR architecture.
Goichi ONO Yuki MORI Michiaki NAKAYAMA Yusuke KANNO
In order to analyze an impact of threshold voltage (Vth) fluctuation induced by random telegraph noise (RTN) on LSI circuit design, we measured a 40-nm 6-Tr-SRAM TEG which enables to evaluate individual bit-line current. RTN phenomenon was successfully measured and we also identified that the transfer MOSFET in an SRAM bit-cell was the most sensitive MOSFET. The proposed word line boosting technique, which applies slightly extra stress to the transfer MOSFET, improves about 30% of detecting probability of fail-bit cells caused by RTN.