The search functionality is under construction.

Author Search Result

[Author] Kazumasa YANAGISAWA(5hit)

1-5hit
  • CMOS Process Compatible ie-Flash (Inverse Gate Electrode Flash) Technology for System-on-a Chip

    Shoji SHUKURI  Kazumasa YANAGISAWA  Koichiro ISHIBASHI  

     
    PAPER-Flash Memories

      Vol:
    E84-C No:6
      Page(s):
    734-739

    A highly reliable single-poly flash technology named ie-Flash (inverse gate electrode Flash), which can be embedded in a standard CMOS process without any process modifications, has been developed. The ie-flash cell consists of two elementary cells for OR-logical reading, resulting in significant improvement of reliability. 5 V-programming with 1 ms duration and 1.2 V-read operation of 35 bit memory modules fabricated by a 0.14 µ m CMOS process is demonstrated. This flash technology will extends not only testing cost reduction of the system-on-a chip by replacing laser-link but also provides flexibility of programmable logic applications.

  • µI/O Architecture: A Power-Aware Interconnect Circuit Design for SoC and SiP

    Yusuke KANNO  Hiroyuki MIZUNO  Nobuhiro OODAIRA  Yoshihiko YASU  Kazumasa YANAGISAWA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    589-597

    A power-aware interconnect circuit design--called µI/O architecture--has been developed to provide low-cost system solutions for System-on-Chip (SoC) and System-in-Package (SiP) technologies. The µI/O architecture provides a common interface throughout the module enabling hierarchical I/O design for SoC and SiP. The hierarchical I/O design allows the driver size to be optimized without increasing design complexity. Moreover, it includes a signal-level converter for integrating wide-voltage-range circuit blocks and a signal wall function for turning off each block independently--without invalid signal transmission--by using an internal power switch.

  • Low-Power and High-Speed Advantages of DRAM-Logic Integration for Multimedia Systems

    Takao WATANABE  Ryo FUJITA  Kazumasa YANAGISAWA  

     
    INVITED PAPER

      Vol:
    E80-C No:12
      Page(s):
    1523-1531

    The advantages of DRAM-logic integration were demonstrated through a comparison with a conventional separate-chip architecture. Although the available DRAM capacity is restricted by chip size, the integration provides a high throughput and low I/O-power dissipation due to a large number of on-chip I/O lines with small load capacitance. These features result in smaller chip counts as well as lower power dissipation for systems requiring high data throughput and having relatively small memory capacity. The chip count and I/O-power dissipation were formulated for multimedia systems. For the 3-D computer graphics system with a frame of 12801024 pixels requiring a 60-Mbit memory capacity and a 4.8-Gbyte/s throughput, DRAM-logic integration enabled a 1/12 smaller chip count and 1/10 smaller I/O-power dissipation. For the 200-MIPS hand-held portable computing system that had a 16-Mbit memory capacity and required a 416-Mbyte/s throughput, DRAM-logic integration enabled a 1/4 smaller chip count and 1/17 smaller I/O-power dissipation. In addition, innovative architectures that enhance the advantages of DRAM-logic integration were discussed. Pipeline access for a DRAM macro having a cascaded multi-bank structure, an on-chip cache DRAM, and parallel processing with a reduced supply voltage were introduced.

  • Investigations of Optimum Tier Architectures for ASICs

    Kan TAKEUCHI  Kazumasa YANAGISAWA  Kazuko SAKAMOTO  Teruya TANAKA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E87-A No:11
      Page(s):
    2983-2989

    The optimum tier architectures for ASICs are investigated by using a methodology for predicting packing efficiency of a logic block (the ratio of total cell area to the block area including space regions between cells). In the methodology based on Rent's rule, (1) the empirical parameters required for the prediction are derived from the results of our ASIC products. (2) The concept of logic distance, which is expressed in units of the number of cells rather than the absolute net length, is introduced. (3) Not only performance constraints but also reliability constraints are incorporated. These allow us to make a quantitative comparison of the packing efficiency between various cell and tier structures. It is found that, for mega-cell blocks, all minimum-pitch layer architecture with buffer insertion is expected to give more than 20% reduction in block areas compared to the minimum-pitch + bi-pitch architecture, while satisfying the performance and reliability constraints.

  • Efficient Application of Hot-Carrier Reliability Simulation to Delay Library Screening for Reliability of Logic Designs

    Hisako SATO  Mariko OHTSUKA  Kazuya MAKABE  Yuichi KONDO  Kazumasa YANAGISAWA  Peter M. LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:5
      Page(s):
    842-849

    This paper presents an efficient application of hot-carrier reliability simulation to delay libraries of 0.18µm and 0.14µm gate length logic products. Using analysis of simple primitive inverter cells, a design rule was developed in restricting signal rise time, and delay libraries of actual products were screened to check whether the rise time restrictions were met. At 200MHz, maximum rise time (0-100%) triseMAX was 0.8nsec (17% of duty) under Δtd/td = 5%. For a 800,000 net product, only 25 simulations were done (each less than one minute CPU time) for the internal devices with screening done for this logic process. 30 nets were caught, but judged reliable due to their reduced duty.