1-3hit |
Kazuhiko SAGARA Tokuo KURE Shoji SHUKURI Jiro YAGAMI Norio HASEGAWA Hidekazu GOTO Hisaomi YAMASHITA
This paper describes a novel Recessed Stacked Capacitor (RSTC) structure for 256 Mbit DRAMs, which can realize the requirements for both fine-pattern delineation with limited depth of focus and high cell capacitance. New technologies involved are the RSTC process, 0.25 µm phase-shift lithography and CVD-tungsten plate technology. An experimental memory array has been fabricated with the above technologies and 25 fF/cell capacitance is obtained for the first time in a 0.61.2 µm2 (0.72 µm2) cell.
Shoji SHUKURI Kazumasa YANAGISAWA Koichiro ISHIBASHI
A highly reliable single-poly flash technology named ie-Flash (inverse gate electrode Flash), which can be embedded in a standard CMOS process without any process modifications, has been developed. The ie-flash cell consists of two elementary cells for OR-logical reading, resulting in significant improvement of reliability. 5 V-programming with 1 ms duration and 1.2 V-read operation of 35 bit memory modules fabricated by a 0.14 µ m CMOS process is demonstrated. This flash technology will extends not only testing cost reduction of the system-on-a chip by replacing laser-link but also provides flexibility of programmable logic applications.
Edward W. SCHECKLER Taro OGAWA Shoji SHUKURI Eiji TAKEDA
Material representations and algorithms are presented for simulation of nanometer lithography. Organic polymer resists are modeled as collections of overlapping spheres, with each sphere representing a polymer chain. Exposure and post-exposure bake steps are modeled at the nanometer scale for both positive and negative resists. The development algorithm is based on the Poisson removal probability for each sphere in contact with developer. The Poisson removal rate for a given sphere is derived from a mass balance relationship with a macroscopic development rate model. Simulations of electron beam lithography with (poly) methyl methacrylate and Shipley SAL-601 reveal edge roughness standard deviations from 2 to 3 nm, leading to linewidth peak-to-peak 3σ variation of 15 to 22 nm. Typical simulations require about 2 MBytes and under 5 minutes on a Sun Sparc 10/41 engineering workstation.