The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] parameter identification(3hit)

1-3hit
  • Parameter Identification and State-of-Charge Estimation for Li-Ion Batteries Using an Improved Tree Seed Algorithm

    Weijie CHEN  Ming CAI  Xiaojun TAN  Bo WEI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/05/17
      Vol:
    E102-D No:8
      Page(s):
    1489-1497

    Accurate estimation of the state-of-charge is a crucial need for the battery, which is the most important power source in electric vehicles. To achieve better estimation result, an accurate battery model with optimum parameters is required. In this paper, a gradient-free optimization technique, namely tree seed algorithm (TSA), is utilized to identify specific parameters of the battery model. In order to strengthen the search ability of TSA and obtain more quality results, the original algorithm is improved. On one hand, the DE/rand/2/bin mechanism is employed to maintain the colony diversity, by generating mutant individuals in each time step. On the other hand, the control parameter in the algorithm is adaptively updated during the searching process, to achieve a better balance between the exploitation and exploration capabilities. The battery state-of-charge can be estimated simultaneously by regarding it as one of the parameters. Experiments under different dynamic profiles show that the proposed method can provide reliable and accurate estimation results. The performance of conventional algorithms, such as genetic algorithm and extended Kalman filter, are also compared to demonstrate the superiority of the proposed method in terms of accuracy and robustness.

  • Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling

    Xiaofang WU  Jianghong SHI  

     
    PAPER-Nonlinear Problems

      Vol:
    E95-A No:2
      Page(s):
    542-549

    In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.

  • Practical Inverse Modeling with SIESTA

    Rudolf STRASSER  Siegfried SELBERHERR  

     
    PAPER-Simulation Methodology and Environment

      Vol:
    E83-C No:8
      Page(s):
    1303-1310

    We present a simulation system which meets the requirements for practical application of inverse modeling in a professional environment. A tool interface for the integration of arbitrary simulation tools at the user level is introduced and a methodology for the formation of simulation networks is described. A Levenberg-Marquardt optimizer automates the inverse modeling procedure. Strategies for the efficient execution of simulation tools are discussed. An example demonstrates the extraction of doping profile information on the basis of electrical measurements.