The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] partial-boundary element method(2hit)

1-2hit
  • Analysis of Microstrip Line with a Trapezoidal Dielectric Ridge in Multilayered Media by Partial-Boundary Element Method

    Keren LI  Kazuhiko ATSUKI  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1413-1419

    In this paper, we present an analysis of microstrip line with a trapezoidal dielectric ridge in multilayered media. The method employed in this characterization is called partial-boundary element method (p-BEM) which provides an efficient technique to the analysis of the structures with multilayered media. To improve the convergence of the Green's function used in the analysis with the P-BEM, we employ a technique based on a combination of the Fourier series expansion and the method of images. Treatment on convergence for the boundary integrals is also described. After this treatment, it requires typically one tenth or one hundredth of Fourier terms to obtain the same accuracy compared with the original Green's function. Numerical results are presented for two microstrip lines that have a trapezoidal dielectric ridge placed on a one-layered substrate and a two-layered substrate. These numerical results demonstrate the effects on the characteristics of the microstrip line due to the existence of the dielectric ridge as well as the second layer between the ridge and the fundamental substrate.

  • Characterization of Single and Coupled Microstrip Lines Covered with Protective Dielectric Film

    Kazuhiko ATSUKI  Keren LI  Shoichiro YAMAGUCHI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1095-1099

    In this paper, we presented an analysis of single and coupled microstrip lines covered with protective dielectric film which is usually used in the microwave integrated circuits. The method employed in the characterization is called partial-boundary element method (p-BEM). The p-BEM provides an efficient means to the analysis of the structures with multilayered media or covered with protective dielectric film. The numerical results show that by changing the thickness of the protective dielectric films such as SiO2, Si and Polyimide covered on these lines on a GaAs substrate, the coupled microstrip lines vary within 10% on the characteristic impedance and within 25% on the effective dielectric constant for the odd mode of coupled microstrip line, respectively, in comparison with the structures without the protective dielectric film. In contrast, the single microstrip lines vary within 4% on the characteristic impedance and within 8% on the effective dielectric constant, respectively. The protective dielectric film affects the odd mode of the coupled lines more strongly than the even mode and the characteristics of the single microstrip lines.