The search functionality is under construction.

Keyword Search Result

[Keyword] penetration depth(3hit)

1-3hit
  • Analytical Inductance Calculation of Superconducting Stripline by Use of Transformation into Perfect Conductor Model

    Yoshinao MIZUGAKI  Akio KAWAI  Ryuta KASHIWA  Masataka MORIYA  Tadayuki KOBAYASHI  

     
    BRIEF PAPER

      Vol:
    E93-C No:4
      Page(s):
    486-488

    We present analytical expression for inductance of a superconducting stripline, a strip sandwiched by two superconducting ground planes. In our method, we utilize the analytical formula for a perfect-conducting stripline derived by Chang in 1976. To utilize Chang's formula, we first transform the structure of a superconducting stripline into that of a perfect-conducting stripline by reducing the thicknesses of the superconducting layers. The thickness reduction is "λ coth (t/λ)" for each (upper or lower) side, where λ and t are the field penetration depth and the layer thickness, respectively. Then, we apply Chang's formula to the transformed stripline model. The calculated results are in good agreement with the numerical and experimental results.

  • Millimeter-Wave Processing of LaCrO3 and LaNiO3 Perovskites Using 28 GHz Frequency

    Hirotsugu TAKIZAWA  Masato IWASAKI  

     
    PAPER-Millimeter-Wave Heating

      Vol:
    E86-C No:12
      Page(s):
    2469-2473

    Both Cr2O3 and NiO absorb 28 GHz milli-meter-wave energy well and this strong coupling with millimeter-waves can be used to promote a chemical reaction with La2O3 to form perovskite-type LaCrO3 or LaNiO3 ceramics. In La2O3-Cr2O3 system, the reaction proceeded rapidly and single phase LaCrO3 could be synthesized within 15 min even at lower temperature (400) as compared to conventional synthesis (T > 800). In the case of LaNiO3, the reaction proceeded rapidly in the early stage of heating (t < 15 min), but not completed even after prolonged millimeter-wave irradiation. The results suggest an importance of millimeter-wave penetration depth, especially for processing of conductive materials.

  • Penetration Characteristics of Submillimeter Waves in Tissues and Aqueous Solution of Protein

    Tadashi FUSE  Masao TAKI  Osamu YOKORO  

     
    PAPER

      Vol:
    E77-B No:6
      Page(s):
    743-748

    This paper presents an experimental study on the penetration characteristics of submillimeter waves in biological tissues and material. The measured values of the penetration depth in excised natural muscle, fat, and aqueous solution of protein, bovine serum albumin (BSA), over the wavelengths of 281 through 496µm are presented. Penetration depths at these wavelengths are 0.11-0.17mm in the natural pork muscle, and 0.69-0.98mm in the natural pork fat, and are the larger at the longer wavelengths. The values vary considerably from sample to sample. Since the measurement of the penetration depth in this study is shown sufficiently reproducible, the variation of the measured penetration depth is attributed to the variation of natural tissues such as that in water content. It is found that the penetration depth of submillimeter waves in aqueous solution of BSA depends almost linearly on the amount of protein content in the solution, and that the typical values of the penetration depth in the natural muscle roughly agree with that in the 35% aqueous solution of BSA in the submillimeter-wave region.