The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] polarization splitter(5hit)

1-5hit
  • Coupling Analysis of Fiber-Type Polarization Splitter Open Access

    Taiki ARAKAWA  Kazuhiro YAMAGUCHI  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2023/10/27
      Vol:
    E107-C No:4
      Page(s):
    98-106

    We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.

  • Band Characteristics of a Polarization Splitter with Circular Cores and Hollow Pits

    Midori NAGASAKA  Taiki ARAKAWA  Yutaro MOCHIDA  Kazunori KAMEDA  Shinichi FURUKAWA  

     
    PAPER

      Pubricized:
    2022/10/17
      Vol:
    E106-C No:4
      Page(s):
    127-135

    In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.

  • Study on Single-Polarized Holey Fibers with Double-Hole Unit Cores for Cross-Talk Free Polarization Splitter

    Zejun ZHANG  Yasuhide TSUJI  Masashi EGUCHI  Chun-ping CHEN  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    620-626

    A single-polarization single-mode (SPSM) photonic crystal fiber (PCF) based on double-hole unit core is proposed in this paper for application to cross-talk free polarization splitter (PS). Birefringence of the PCF is obtained by adopting double-hole unit cells into the core to destroy its symmetry. With an appropriate cladding hole size, single x- or y-polarized PCF can be achieved by arranging the double-hole unit in the core along the x- or y-axis, respectively. Moreover, our proposed SPSM PCF has the potential to be applied to consist a cross-talk free PS. The simulation result by employing a vectorial finite element beam propagation method (FE-BPM) demonstrates that an arbitrary polarized incident light can be completely separated into two orthogonal single-polarized components through the PS. The structural tolerance and wavelength dependence of the PS have also been discussed in detail.

  • Design Considerations on a Guided-Wave Polarization Splitter Utilizing a Bifurcating Waveguide in a Uniaxial Anisotropic Substrate

    Toshiaki KITAMURA  Masahiro GESHIRO  Shinnosuke SAWA  Hideatsu YAMANAKA  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1399-1404

    A new type of guided-wave polarization splitter is proposed for the operation at optical frequencies. The basic structure of the device is a bifurcating waveguide fabricated in a uniaxial crystalline material such as LiNbO3. The splitting behavior of optical waves into two waves with mutually perpendicular directions of polarization by an optically anisotropic material is utilized in the branching section of the present polarization splitter. Once of the conspicuous features of the device is free of any electrical control via the electro-optic effects. Some numerical results obtained with the finite difference beam propagation method indicate that extinction ratios better than 20dB are possible of realization for both TE and TM modes.

  • A Novel Optical Polarization Splitter Using a Dimensionally Tapered Velocity Coupler

    Masashi HOTTA  Masahiro GESHIRO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1722-1725

    A new polarization splitter at optical frequencies is proposed. The basic structure of the device is a tapered velocity coupler which is composed of a straight and a dimensionally tapered slab waveguide on a LiNbO3 substrate. The numerical results obtained with the finite difference method indicate that extinction ratios of polarization less than 2% for both TE and TM modes are possible of realization under moderate control voltages and that the splitting characteristics are stable over a wide range of frequencies.