The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] polaron(4hit)

1-4hit
  • Ambipolar Conduction of λ-DNA Transistor Fabricated on SiO2/Si Structure

    Naoto MATSUO  Kazuki YOSHIDA  Koji SUMITOMO  Kazushige YAMANA  Tetsuo TABEI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/01/26
      Vol:
    E105-C No:8
      Page(s):
    369-374

    This paper reports on the ambipolar conduction for the λ-Deoxyribonucleic Acid (DNA) field effect transistor (FET) with 450, 400 and 250 base pair experimentally and theoretically. It was found that the drain current of the p-type DNA/Si FET increased as the ratio of the guanine-cytosine (GC) pair increased and that of the n-type DNA/Si FET decreased as the ratio of the adenine-thymine (AT) pair decreased, and the ratio of the GC pair and AT pair was controlled by the total number of the base pair. In addition, it was found that the hole conduction mechanism of the 400 bp DNA/Si FET was polaron hopping and its activation energy was 0.13eV. By considering the electron affinity of the adenine, thymine, guanine, and cytosine, the ambipolar characteristics of the DNA/Si FET was understood. The holes are injected to the guanine base for the negative gate voltage, and the electrons are injected to the adenine, thymine, and cytosine for the positive gate voltage.

  • Organic Display Devices Using Poly (Arylene Vinylene) Conducting Polymers

    Mitsuyoshi ONODA  Hiroshi NAKAYAMA  Yutaka OHMORI  Katsumi YOSHINO  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    672-678

    Optical recording has been performed successfully by the preirradiation of light upon the precursor of poly (arylene vinylene) conducting polymers such as poly (p-phenylene vinylene) (PPV) and poly (1,4-naphthalene vinylene) (PNV) and subsequent thermal treatment. The effect has been tentatively interpreted in terms of the deterioration of the irradiated area of the precursor polymer in which polymerization is suppressed. Furthermore, an orange electroluminescent (EL) diode utilizing PNV has been demonstrated for the first time and the EL properties of PNV are discussed in comparison with those of EL diode utilizing PPV. The EL emission of these two devices are discussed in terms of radiative recombination of the singlet polaron exciton formed by the injection of electrons and holes, the difference of effective conjugation length and the interchain transfer of polaron excitons.

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    38-45

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)=X(n)/(X(l))n both for the second (n=2) and third-order (n=3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    36-43

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)X(n)/(X(1))n both for the second (n2) and third-order (n3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.