The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] polymer(125hit)

121-125hit(125hit)

  • Second Harmonic Generation in Poled Polymer Films Doped with α-Cyano Unsaturated Carboxylic Acids

    Okihiro SUGIHARA  Yasuhiko HIRANO  Naomichi OKAMOTO  Yutaka TAKETANI  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:10
      Page(s):
    1523-1528

    Poled polymer films doped with novel nonlinear organic materials, α-cyano unsaturated carboxylic acid (α-CUCA) derivatives, are prepared. Linear and second-order nonlinear optical properties are investigated. It is found that as the value of hyperpolarizability of the derivatives increases, the second-order nonlinear susceptibility of the film increases. Cerenkov-type second harmonic generation (SHG) of Nd: YAG laser is realized in a poled polymer waveguide doped with the α-CUCA material with a slight absorption at doubled wavelength.

  • Optical Sampling of Electrical Signals in Poled Polymeric Media

    Makoto YAITA  Tadao NAGATSUMA  

     
    PAPER-Optical/Microwave Devices

      Vol:
    E76-C No:2
      Page(s):
    222-228

    This paper theoretically evaluates the external electro-optic (EO) sampling of high-speed electrical signals using poled polymers as materials for a proximity electric-field sensor. Based on the derivation of the half-wave voltage and the analysis of a static electric field coupled to the polymeric media placed over IC interconnections, invasiveness, voltage sensitivity, and spatial resolution have been discussed. The polymeric sensors have shown to be used in contact with the IC interconnections with negligibly small invasiveness, thus making polymeric sensors provide higher sensitivity and spatial resolution than inorganic crystals such as GaAs and KD*P.

  • Damage of Piezoelectric Polymer Caused by High Acoustic Pressures

    Naoto INOSE  Masao IDE  

     
    LETTER

      Vol:
    E75-A No:7
      Page(s):
    908-909

    This letter describes damages of piezoelectric polymer using in hydrophones to measure high acoustic pressures at the focal point of Extracorporeal Shockwave Lithotripter (ESWL).

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    38-45

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)=X(n)/(X(l))n both for the second (n=2) and third-order (n=3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    36-43

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)X(n)/(X(1))n both for the second (n2) and third-order (n3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.

121-125hit(125hit)