The search functionality is under construction.

Keyword Search Result

[Keyword] pre-rake(8hit)

1-8hit
  • Adaptive Interference Avoidance with Pre-RAKE Diversity Combining for High-Data-Rate UWB Systems

    Xuewen LIAO  Shihua ZHU  Erlin ZENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3347-3350

    Multipath energy capture and inter-symbol interference (ISI) are two intractable problems in high-data-rate Ultra-wideband (UWB) systems. To tackle the problems and simplify the receiver, we propose an adaptive interference avoidance scheme based on Pre-RAKE combining technique. The symbol repetition period (SRP) is regarded a changeable parameter in an ordered set to avoid severe interference paths and guarantee high data-rate. The set is known to both the transmitter and receiver. The index of the selected SRP is then sent to the receiver to coordinate the transmitter and receiver. The SRP can be updated adaptively according to the variations of the channels. Both theoretical analysis and simulations show that the ISI is mitigated and the transmission rate is improved simultaneously compared to the constant SRP transmission scheme.

  • Analysis of Performance Degradation due to Channel Estimation Error in Pre-Rake TDD/CDMA

    Norharyati BINTI HARUM  Yuh TAMURA  Sigit P.W. JAROT  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2508-2515

    In recent years, Pre-Rake combining technique has become a hot topic of research as it decreases the complexity of the portable mobile unit, while achieving the same multipath diversity effect of the Rake receiver. The technique is based on precoding of the transmitted signal relying on knowledge of the channel estimation response before transmission. This a priori channel state information is available in Time Division Duplexing (TDD) systems, since the same channel is used both in uplink and downlink. In practice, the error in channel estimation in Pre-Rake system occurs due to time variability in mobile radio channel. Most previous works on Pre-Rake in TDD CDMA have not taken into consideration the effect of imperfect channel estimation. In this paper, we present Pre-Rake performance under imperfect channel estimation due to time variability in TDD system, depending on Doppler Frequency and compare it with the ideal Pre-Rake system. Numerical analysis and computer simulations were carried out to obtain the system error probability.

  • Pre-Rake Diversity Combining for UWB Systems in IEEE 802.15 UWB Multipath Channel

    Shunsuke IMADA  Tomoaki OHTSUKI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2193-2199

    Since Ultra Wideband Impulse Radio (UWB-IR) system can resolve many paths and is thus rich in multipath diversity, the use of Rake diversity combining is very effective. In the Rake diversity combining, the bit error rate (BER) is improved with the increase of the number of fingers. The Pre-Rake diversity combining is known as another technique to achieve the performance equivalent to the Rake diversity combining without increasing the receiver complexity. In the Pre-Rake diversity combining, the transmitted signals are scaled and delayed according to the delay and strength of the multipath. In this paper, we propose Pre-Rake diversity combining techniques for UWB systems, All-Pre-Rake (A-Pre-Rake) diversity combining using perfect channel information, Selective-Pre-Rake (S-Pre-Rake) diversity combining using the information on the L strongest paths, and Partial-Pre-Rake (P-Pre-Rake) diversity combining using the information on the first L paths. From the results of our computer simulation for UWB-IR systems in IEEE 802.15 UWB multipath channel model, we show that the proposed Pre-Rake diversity combining techniques are effective for the UWB-IR systems to achieve good error rate performance, while keeping the complexity of the receiver low. We also show that the S-Pre-Rake diversity combining is effective to achieve good error rate performance with less channel information.

  • Frequency-Domain Pre-Rake Transmission for DSSS/TDD Mobile Communications Systems

    Fumiyuki ADACHI  Kazuaki TAKEDA  Hiromichi TOMEBA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    784-787

    In this Letter, a frequency-domain pre-rake transmission is presented for a direct sequence spread spectrum with time division duplex (DSSS/TDD) system under a frequency-selective fading channel. The mathematical relationship between frequency-domain and time-domain pre-rake transmissions is discussed. It is confirmed by the computer simulation that, similar to the time-domain pre-rake transmission, frequency-domain pre-rake transmission can improve the bit error rate (BER) performance. The frequency-domain pre-rake transmission shows only slight performance degradation compared to the frequency-domain rake reception for large SF.

  • Pre-Rake Scheme for UWB-IR System with Guard-Time in Multipath Fading Channel

    Kazuto USUDA  Honggang ZHANG  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E87-A No:10
      Page(s):
    2630-2638

    In this paper, Pre-Rake scheme for pulse based Ultra Wideband impulse radio (UWB-IR) communications system is proposed considering a standardized UWB channel model from IEEE 802.15 SG3a, which is based on an extensive set of short-range indoor channel measurements. Two kinds of pulse waveforms are taken in account here, namely, Gaussian mono-pulse and newly designed Prolate Spheroidal Wave Functions (PSWF) pulses corresponding to FCC Spectrum Mask. The Pre-Rake scheme is shown to contribute to the low-power, cost-efficient UWB system designing as well as Rake combining gain. Instead of building a Rake receiver at the receiving side (e.g. portable unit), the transmitter (e.g. access point) can pre-combine the UWB signal before transmission in the forward link by estimating the channel impulse response from the reverse link. While the Pre-Raked signal is convolved with the estimated channel impulse response, the function of Rake combination at the receiver is automatically performed. Meanwhile, in order to defeat inter-pulse-interferences (IPI) caused by severe multipath fading conditions, adaptive guard-time scheme for consecutive pulses is proposed as well. Monte-Carlo simulations are carried out to compare the Pre-Rake with Rake results and show that Pre-Rake scheme is as good as Rake combining for both types of pulse waveforms. Then the mobile or portable unit with a conventional receiver can still achieve the diversity gain of Rake combination. Moreover, the effects of placing guard-time between pulses are also verified.

  • Multiple Pre-Rake Filtering Based on the Predicted Channel Impulse Response in the Transmitter and a Rake Combiner in the Receiver for TDD/DS-CDMA Mobile Communication Systems

    Chang-Jun AHN  Iwao SASASE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:10
      Page(s):
    2282-2291

    The pre-Rake system is known as a technique in TDD DS/CDMA system to reduce the mobile complexity and achieve the same BER performance like Rake receiver. The pre-Rake system itself is not optimum, since the channel impulse responses of uplink and downlink are slightly different in TDD system, so the signal- to-noise ratio (SNR) can be maximized with a matched filter based Rake receiver, which has not been considered in the conventional pre-Rake system. Furthermore pre-Rake system is sensitive to the Doppler frequency. Even though the pre-Rake system has the ability to suppress other user interference, it is not efficient to maximize the received signal in high Doppler frequency. However, Rake combiner is utilized for the detection method in our proposed system. So the maximized signal can keep the orthogonality better than the pre-Rake system and our proposed system can compensate the Doppler frequency effect. From these reasons, our system achieves better BER performance than that of the pre-Rake system with increasing the number of users in high Doppler frequency.

  • A Novel Transmission Diversity System in TDD-CDMA

    Incheol JEONG  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1409-1416

    This paper presents a novel transmission diversity scheme for code division multiple access system. Conventional diversity receivers in mobile stations require space and complicated circuits, however, the proposed diversity schemes present significant diversity effect without any diversity equipment at the mobile station. It is possible to use the transmitter diversity at the base station by using the feature of time division duplex (TDD) which has strongly correlated fading patterns in both forward and reverse link. Computer simulation is performed to evaluate the performance of the proposed systems for single user environment. The performance of the system 1, which select best situated antenna, is analyzed and the BER performance for multiple access is presented.

  • Pre-RAKE Diversity Combination for Direct Sequence Spread Spectrum Mobile Communications Systems

    Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    1008-1015

    A new method of multipath diversity combination is proposed for Direct Sequence Spread Spectrum (DS-SS) mobile communications. In this method, the transmitted signal from the base staion is the sum of a number of the same spread signal, each one delayed and scaled according to the delay and the strength of the multipaths of the transmission channel. As a result the received signal at the mobile unit will already be a Rake combination of the multipath signals. This new method is called Pre-Rake diversity combination because the Rake diversity combination process is performed before transmission By this method the size and complexity of the mobile unit can be minimized, and the unit is made as simple as a non-combining single path receiver. A theoretical examination of the Signal to Noise Ratio (SNR) and the Bit Error Rate (BER) results for the traditional Rake and the Pre-Rake combiners as well as computer simulations show that the performance of the Pre-Rake combiner is equivalent to that of the Rake combiner.