The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] precipitation(5hit)

1-5hit
  • Free Electron Laser-Polymerization of C60 Grown by Liquid-Liquid-Interfacial Precipitation Method

    Daiki KOIDE  Shouta KATO  Eri IKEDA  Nobuyuki IWATA  Hiroshi YAMAMOTO  

     
    PAPER

      Vol:
    E94-C No:2
      Page(s):
    151-156

    The purpose of this work is to synthesize a three-dimension C60 polymer using photo-polymerization method. The used pristine materials were C60 precipitates prepared by a liquid-liquid interfacial precipitation (LLIP) method. The prepared LLIP material was set in the vacuum and was compressed in the anvil with the pressure of 600 MPa or 7 GPa. The 4th harmonics FEL with the wavelength of 500 nm was irradiated with macro-pulses (the pulse width of 20 µs) containing very short micro-pulses (the pulse width of 200 fs). The Raman Ag(2) peak of C60 molecules in the vicinity of 1469 cm-1 becomes broad and shifts to the lower energy region as proceeding of polymerization. Under high pressure and/or FEL irradiation the LLIP crystal revealed the large red-shift and the increment of the half width of the Raman Ag(2) peak. Furthermore the LLIP crystal mixture with iodine revealed the more distinctive red-shift, ca.13cm-1 because of highly packing of C60 molecules. The C60 molecular accession by LLIP process and/or the photo-assisted hole-doping from iodine were promising conditions to promote the photo-polymerization effectively.

  • Atomic Scale Simulation of Extended Defects: Monte Carlo Approach

    Jaehee LEE  Taeyoung WON  

     
    PAPER-Process Modeling and Simulation

      Vol:
    E83-C No:8
      Page(s):
    1253-1258

    This paper reports a Monte Carlo calculation of the bimolecular reaction of arsenic precipitation. As the accuracy of the numerical solution for the coupled rate equations strongly depends on the size of grid spacing, it is necessary to choose adequate number of rate equations in order to understand the behavior of the extended defects. Therefore, we developed a general kinetic Monte Carlo model for the extended defects, which explicitly takes the time evolution of the size density of the extended defects into account. The Monte Carlo calculation exhibits a quantitative agreement with the experimental data for deactivation, and successfully reproduces the rapid deactivation at the beginning phase followed by slow deactivation in the subsequent steps.

  • Accuracy of Radar-AMeDAS Precipitation

    Ysutaka MAKIHARA  Naotaka UEKIYO  Akira TABATA  Yoshiyuki ABE  

     
    PAPER

      Vol:
    E79-B No:6
      Page(s):
    751-762

    A verification is made on the accuracy of Radar-AMeDAS precipitation, which represents hourly precipitation over the Japanese Islands and the surrounding sea area with a spatial resolution of 5km using data from 5cm conventional radars, 10cm Fujisan Radar, and Automated Meteorological Data Acquisition System (AMeDAS) raingauge network. By comparing with data from a very dense raingauge network of the Tokyo Metropolitan Government, it is found that 1) Radar-AMeDAS precipitation shows good agreement if a positioning error of one pixel of 5km square is allowed 2) Radar-AMeDAS precipitation represents almost the average of raingauge measurements in the 5km square for most of the precipitation caused by a large scale disturbance, and 3) Radar-AMeDAS precipitation is close to the maximum raingauge measurement in the pixel when precipitation is extremely localized such as thunderstorms or showers. Radar-AMeDAS precipitations are compared also with AMeDAS measurements statistically with respect to the appearance rates, that is (total number of pixels where specific intensity is observed) / (total number of all pixels), for different precipitation intensities. The rate of Radar- AMeDAS precipitation shows excellent agreement with that of AMeDAS if radar echoes are observed at the altitude lower than 2km. Since Radar- AMeDAS precipitation on land sometimes represents the maximum of precipitation in a pixel for the purpose of unfailingly detecting extremely localized severe precipitation, it shows a high appearance rate at high precipitation intensity than AMeDAS, which is considered to represent statistically the average of a pixel. As a result, in estimating areal rainfall amounts, Radar- AMeDAS precipitation overestimates AMeDAS measurement by 8% at 5mm/h and by 12% at 40mm/h. Radar- AMeDAS precipitation over the sea, with no local calibration by AMeDAS and with little influence of orography, is 2% weaker in intensity than AMeDAS at 10mm/h, and 12% at 40mm/h.

  • Validation and Ground Truth for TRMM Precipitation Radar Using the MU Radar

    Toru SATO  Toshihiro TERAOKA  Iwane KIMURA  

     
    PAPER

      Vol:
    E79-B No:6
      Page(s):
    744-750

    The MU radar of Japan is one of important candidates for providing accurate ground truth for the TRMM precipitation radar. It can provide the dropsize distribution data together with the background atmospheric wind data with high accuracy and high spatial resolution. Special observation scheme developed for TRMM validation using the MU radar is described, and preliminary results from its test experiment are shown. The high-resolution MU radar data are also used in numerical simulations to validate the rain retrieval algorithm for the TRMM PR data analysis. Among known sources of errors in the rain retrieval, the vertical variability of the dropsize distribution and the partial beam-filling effect are examined in terms of their significance with numerical simulations based on the MU radar data. It is shown that these factors may seriously affect the accuracy of the TRMM rain retrieval, and that it is necessary to establish statistical means for compensation. However, suggested means to improve the conventional α-adjustment method require careful treatment so that they do not introduce new sources of errors.

  • Ice Depolarization Characteristics on Ka-Band Satellite-to-Ground Path in Stratus Type Rainfall Events

    Yasuyuki MAEKAWA  Nion Sock CHANG  Akira MIYAZAKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:2
      Page(s):
    239-247

    Ice depolarization characteristics are discussed using cross-polarization discrimination (XPD) observations of the CS-2 beacon signal (19.45GHz, right-hand circular polarization, elevation angle of 49.5) in the stratus type rainfall events, which show a clear bright band in the simultaneous X-band radar observations. Both amplitude and phase of the mean ice depolarizations are deduced in each rainfall event by subtracting theoretical rain depolarizations from the observed values. In spite of the difference in rainfall rates on the ground, the inferred depolarizations indicate much the same amplitude and phase as those directly obtained in pure ice depolarization events without appreciable rain depolarizations. The origin of the ice depolarizations in the stratus type events, as well as in the pure ice events, seems to be ice crystals near the cloud top which are not very much concerned with the ground rainfall rates. Compared with the radar measurements above the bright band, the ice depolarizations are approximately proportional to the vertical length of the ice region at least up to 3km above the bright band. This result yields the equivalent "specific depolarization" per unit path length: |Ci|610-3km-1 (44dB in XPD) for the mean ice depolarizations in each event. Using this coefficient, the ice effects (XPD), which refer to the deviations of the observed depolarizations from the theoretical rain depolarization, are well described as a function of the height ratio of the ice region to the rain region in the stratus type events. Finally, the ice effects (XPD) are calculated against vertical lengths of the ice region in the case of specific rain heights of 2-4 km. These calculations are performed for various rainfall rates of 2-15mm/h in view of ground-based rain observations.