The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] radio waves(2hit)

1-2hit
  • A Photovoltaic-Assisted CMOS Rectifier for Synergistic Energy Harvesting from Ambient Radio Waves

    Koji KOTANI  Takumi BANDO  Yuki SASAKI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    245-252

    A photovoltaic (PV)-assisted CMOS rectifier was developed for efficient energy harvesting from ambient radio waves as one example of the synergistic energy harvesting concept. The rectifier operates truly synergistically. A pn junction diode acting as a PV cell converts light energy to DC bias voltage, which compensates the threshold voltage (Vth) of the MOSFETs and enhances the radio frequency (RF) to DC power conversion efficiency (PCE) of the rectifier even under extremely low input power conditions. The indoor illuminance level was sufficient to generate gate bias voltages to compensate Vths. Although the same PV cell structure for biasing nMOS and pMOS transistors was used, photo-generated bias voltages were found to become unbalanced due to the two-layered pn junction structures and parasitic bipolar transistor action. Under typical indoor lighting conditions, a fabricated PV-assisted rectifier achieved a PCE greater than 20% at an RF input power of -20dBm, a frequency of 920MHz, and an output load of 47kΩ. This PCE value is twice the value obtained by a conventional rectifier without PV assistance. In addition, it was experimentally revealed that if symmetric biasing voltages for nMOS and pMOS transistors were available, the PCE would increase even further.

  • Analysis of Mountain-Reflected Signal Strength in Digital Mobile Radio Communications

    Toshiyuki MAEYAMA  Fumio IKEGAMI  Yasushi KITANO  

     
    PAPER

      Vol:
    E76-B No:2
      Page(s):
    98-102

    In order to evaluate multipath signal strengths reflected by mountain, a fundamental equation is derived for both cases where antenna beams are larger and smaller than a reflecting plane, assuming that reflection consists of absoption and scattering at the mountain surface. Absorption loss at a mountain surface was measured on a model propagation path by using sharp beam antennas to separately pick up the mountain-reflected signal.