The search functionality is under construction.

Keyword Search Result

[Keyword] radix-value estimation algorithm(2hit)

1-2hit
  • A 12-bit 1.25MS/s Area-Efficient Radix-Value Self-Estimated Non-Binary Cyclic ADC with Relaxed Requirements on Analog Components

    Hao SAN  Rompei SUGAWARA  Masao HOTTA  Tatsuji MATSUURA  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    534-540

    A 12-bit 1.25MS/s cyclic analog-to-digital converter (ADC) is designed and fabricated in 90nm CMOS technology, and only occupies an active area as small as 0.037mm2. The proposed ADC is composed of a non-binary AD convertion stage, and a on-chip non-binary-to-binary digital block includes a built-in radix-value self-estimation scheme. Therefore, althouh a non-binary convertion architechture is adopted, the proposed ADC is the same as other stand-alone binary ADCs. The redundancy of non-binary 1-bit/step architecture relaxes the accuracy requirement on analog components of ADC. As a result, the implementation of analog circuits such as amplifier and comparator becomes simple, and high-density Metal-Oxide-Metal (MOM) capacitors can be used to achieve a small chip area. Furthermore, the novel radix-value self-estimation technique can be realized by only simple logic circuits without any extra analog input, so that the total active area of ADC is dramatically reduced. The prototype ADC achieves a measured peak signal-to-noise-and-distortion-ratio (SNDR) of 62.3dB using a poor DC gain amplifier as low as 45dB and MOM capacitors without any careful layout techniques to improve the capacitor matching. The proposed ADC dissipated 490µW in analog circuits at 1.4V power supply and 1.25Msps (20MHz clocking). The measured DNL is +0.94/-0.71LSB and INL is +1.9/-1.2LSB at 30kHz sinusoidal input.

  • Robust Cyclic ADC Architecture Based on β-Expansion

    Rie SUZUKI  Tsubasa MARUYAMA  Hao SAN  Kazuyuki AIHARA  Masao HOTTA  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    553-559

    In this paper, a robust cyclic ADC architecture with β-encoder is proposed and circuit scheme using switched-capacitor (SC) circuit is introduced. Different from the conventional binary ADC, the redundancy of proposed cyclic ADC outputs β-expansion code and has an advantage of error correction. This feature makes ADC robust against the offset of comparator capacitor mismatch and finite DC gain of amplifier in multiplying-DAC (MDAC). Because the power penalty of high-gain wideband amplifier and the required accuracy of circuit elements for high resolution ADC can be relaxed, the proposed architecture is suitable for deep submicron CMOS technologies beyond 90 nm. We also propose a β-value estimation algorithm to realize high accuracy ADC based on β-expansion. The simulation results show the effectiveness of proposed architecture and robustness of β-encoder.