The search functionality is under construction.

Keyword Search Result

[Keyword] random walks(4hit)

1-4hit
  • Random Walks on Stochastic and Deterministic Small-World Networks

    Zi-Yi WANG  Shi-Ze GUO  Zhe-Ming LU  Guang-Hua SONG  Hui LI  

     
    LETTER-Information Network

      Vol:
    E96-D No:5
      Page(s):
    1215-1218

    Many deterministic small-world network models have been proposed so far, and they have been proven useful in describing some real-life networks which have fixed interconnections. Search efficiency is an important property to characterize small-world networks. This paper tries to clarify how the search procedure behaves when random walks are performed on small-world networks, including the classic WS small-world network and three deterministic small-world network models: the deterministic small-world network created by edge iterations, the tree-structured deterministic small-world network, and the small-world network derived from the deterministic uniform recursive tree. Detailed experiments are carried out to test the search efficiency of various small-world networks with regard to three different types of random walks. From the results, we conclude that the stochastic model outperforms the deterministic ones in terms of average search steps.

  • Quantum Walks on the Line with Phase Parameters

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER

      Vol:
    E95-D No:3
      Page(s):
    722-730

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  • Traffic Properties for Stochastic Routing on Scale-Free Networks

    Yukio HAYASHI  Yasumasa ONO  

     
    PAPER-Network

      Vol:
    E94-B No:5
      Page(s):
    1311-1322

    For realistic scale-free networks, we investigate the traffic properties of stochastic routing inspired by a zero-range process known in statistical physics. By parameters α and δ, this model controls degree-dependent hopping of packets and forwarding of packets with higher performance at more busy nodes. Through a theoretical analysis and numerical simulations, we derive the condition for the concentration of packets at a few hubs. In particular, we show that the optimal α and δ are involved in the trade-off between a detour path for α < 0 and long wait at hubs for α > 0; In the low-performance regime at a small δ, the wandering path for α < 0 better reduces the mean travel time of a packet with high reachability. Although, in the high-performance regime at a large δ, the difference between α > 0 and α < 0 is small, neither the wandering long path with short wait trapped at nodes (α = -1), nor the short hopping path with long wait trapped at hubs (α = 1) is advisable. A uniformly random walk (α = 0) yields slightly better performance. We also discuss the congestion phenomena in a more complicated situation with packet generation at each time step.

  • Partial Random Walks for Transient Analysis of Large Power Distribution Networks

    Weikun GUO  Sheldon X.-D. TAN  Zuying LUO  Xianlong HONG  

     
    PAPER-Physical Design

      Vol:
    E87-A No:12
      Page(s):
    3265-3272

    This paper proposes a new simulation algorithm for analyzing large power distribution networks, modeled as linear RLC circuits, based on a novel partial random walk concept. The random walk simulation method has been shown to be an efficient way to solve for voltages of small number of nodes in a large power distribution network, but the algorithm becomes expensive to solve for voltages of nodes that are more than a few with high accuracy. In this paper, we combine direct methods like LU factorization with the random walk concept to solve power distribution networks when voltage waveforms from a large number of nodes are required. We extend the random walk algorithm to deal with general RLC networks and show that Norton companion models for capacitors and self-inductors are more amenable for transient analysis by using random walks than Thevenin companion models. We also show that by nodal analysis (NA) formulation for all the voltage sources, LU-based direct simulations of subcircuits can be speeded up. Experimental results demonstrate that the resulting algorithm, called partial random walk (PRW), has significant advantages over the existing random walk method especially when the VDD/GND nodes are sparse and accuracy requirement is high.