The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] raster(8hit)

1-8hit
  • A GPU-Based Rasterization Algorithm for Boolean Operations on Polygons

    Yi GAO  Jianxin LUO  Hangping QIU  Bin TANG  Bo WU  Weiwei DUAN  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2017/09/29
      Vol:
    E101-D No:1
      Page(s):
    234-238

    This paper presents a new GPU-based rasterization algorithm for Boolean operations that handles arbitary closed polygons. We construct an efficient data structure for interoperation of CPU and GPU and propose a fast GPU-based contour extraction method to ensure the performance of our algorithm. We then design a novel traversing strategy to achieve an error-free calculation of intersection point for correct Boolean operations. We finally give a detail evaluation and the results show that our algorithm has a higher performance than exsiting algorithms on processing polygons with large amount of vertices.

  • Parallel Geospatial Raster Data I/O Using File View

    Wei XIONG  Ye WU  Luo CHEN  Ning JING  

     
    LETTER-Storage System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2192-2195

    The challenges of providing a divide-and-conquer strategy for tackling large geospatial raster data input/output (I/O) are longstanding. Solutions need to change with advances in the technology and hardware. After analyzing the reason for the problems of traditional parallel raster I/O mode, a parallel I/O strategy using file view is proposed to solve these problems. Message Passing Interface I/O (MPI-IO) is used to implement this strategy. Experimental results show how a file view approach can be effectively married to General Parallel File System (GPFS). A suitable file view setting provides an efficient solution to parallel geospatial raster data I/O.

  • Automatic Road Area Extraction from Printed Maps Based on Linear Feature Detection

    Sebastien CALLIER  Hideo SAITO  

     
    PAPER-Segmentation

      Vol:
    E95-D No:7
      Page(s):
    1758-1765

    Raster maps are widely available in the everyday life, and can contain a huge amount of information of any kind using labels, pictograms, or color code e.g. However, it is not an easy task to extract roads from those maps due to those overlapping features. In this paper, we focus on an automated method to extract roads by using linear features detection to search for seed points having a high probability to belong to roads. Those linear features are lines of pixels of homogenous color in each direction around each pixel. After that, the seeds are then expanded before choosing to keep or to discard the extracted element. Because this method is not mainly based on color segmentation, it is also suitable for handwritten maps for example. The experimental results demonstrate that in most cases our method gives results similar to usual methods without needing any previous data or user input, but do need some knowledge on the target maps; and does work with handwritten maps if drawn following some basic rules whereas usual methods fail.

  • Empirical Performance Evaluation of Raster-to-Vector Conversion Methods: A Study on Multi-Level Interactions between Different Factors

    Hasan S.M. AL-KHAFFAF  Abdullah Z. TALIB  Rosalina ABDUL SALAM  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:6
      Page(s):
    1278-1288

    Many factors, such as noise level in the original image and the noise-removal methods that clean the image prior to performing a vectorization, may play an important role in affecting the line detection of raster-to-vector conversion methods. In this paper, we propose an empirical performance evaluation methodology that is coupled with a robust statistical analysis method to study many factors that may affect the quality of line detection. Three factors are studied: noise level, noise-removal method, and the raster-to-vector conversion method. Eleven mechanical engineering drawings, three salt-and-pepper noise levels, six noise-removal methods, and three commercial vectorization methods were used in the experiment. The Vector Recovery Index (VRI) of the detected vectors was the criterion used for the quality of line detection. A repeated measure ANOVA analyzed the VRI scores. The statistical analysis shows that all the studied factors affected the quality of line detection. It also shows that two-way interactions between the studied factors affected line detection.

  • A New Self-Converging System with Combination of Magnetic Lens and Uniform Horizontal Deflection Field for Color CRTs

    Hiroshi SAKURAI  Etsuji TAGAMI  

     
    INVITED PAPER

      Vol:
    E88-C No:11
      Page(s):
    2078-2085

    Color CRTs (Cathode Ray Tubes) are still evolving in competition with other display devices in the growing TV markets, with continuing demands for enhanced performance and lower cost. In response to these trends, we have developed a new self-converging system of CRT with simple structure. It offers advantages in terms of high resolution for HDTV and large deflection angle for short depth TV sets. The system realizes less spot distortion at the screen periphery of the CRT and lower horizontal dynamic focus voltage than those in a conventional self-converging system, while keeping the cost just as low. In the system, a uniform horizontal deflection field and a newly-developed magnet lens are utilized. The uniform field reduces the spot distortion in exchange for occurrences of raster distortion and convergence error, both of which can be corrected by the newly-developed magnet lens without additional circuit modifications. As a core part of the new system, the lens power of the newly-developed magnet lens varies along the horizontal axis in order to simultaneously achieve convergence and correct the pincushion distortion of the raster. Furthermore, countermeasures for magnet-related issues are taken from the viewpoints of real operation and mass production. The system with the new DY was evaluated in experiments using 86 cm CRTs (16 : 9), and it has been found that the system realizes substantially smaller spot distortions as well as favorable convergence and raster performances, with a drawback of decrease in horizontal deflection sensitivity. The spot oblateness, defined as horizontal spot diameter divided by vertical spot diameter, has decreased from 2.65 to 1.70 accompanying a 15% reduction of horizontal spot sizes at the corners of the screen with 30% decreased dynamic focus voltages and 10% decreased horizontal deflection sensitivity.

  • A Single-Pass Antialiased Rasterization Processor

    Jin-Aeon LEE  Lee-Sup KIM  

     
    PAPER-Computer Graphics

      Vol:
    E84-A No:12
      Page(s):
    3152-3161

    Antialiased is one of challenging problems to be solved for the high fidelity image synthesis in 3D graphics. In this paper a rasterization processor which is capable of single-pass full-screen antialiasing is presented. To implement a H/W accelerated single-pass antialiased rasterization processor at the reasonable H/W cost and minimized processing performance degradation, our work is mainly focused on the efficient H/W implementation of a modified version of the A-buffer algorithm. For the efficient handling of partial-pixel fragments of the rasterization phase, a new partial-pixel-merging scheme and a simple and efficient new dynamic memory management scheme are proposed. For the final blending of partial-pixels without loss of generality, a parallel subpixel blender is introduced. To study the feasibility of the proposed rasterization processor as a practical rasterization processor, a prototype processor has been designed using a 0.35 µm EML technology. It operates 100 MHz @3.3 V and has the rendering performance from 25M to 80M pixel-fragments/sec depending on the scene complexity.

  • Line Fitting Method for Line Drawings Based on Contours and Skeletons

    Osamu HORI  Satohide TANIGAWA  

     
    PAPER

      Vol:
    E77-D No:7
      Page(s):
    743-748

    This paper presents a new line extraction method to capture vectors based on contours and skeletons from line drawing raster images in which the lines are touched by characters or other lines. Conventionally, two line extraction methods have generally been used. One is a thinning method. The other is a medial line extraction method based on parallel pairs of contours. The thinning method tends to distort the extracted lines, especially at intersections and corners. On the other hand, the medial line extraction method has a poor capability as regards capturing correct lines at intersections. Contours are able to maintain edge shapes well, while skeletons preserve topological features; thus, a combination of these features effectively leads to the best fitting line. In the proposed method, the line which best fits the original image is selected from among various candidate lines. The candidates are created from several merged short skeleton fragments located between pairs of short contour fragments. The method is also extended to circular arc fitting. Experimental results show that the proposed line fitting method is effective.

  • A Hardware Accelerator for Design-Rule Checking in a Bit-Mapping CAD System

    Cong-Kha PHAM  Katsufusa SHONO  

     
    PAPER

      Vol:
    E76-A No:10
      Page(s):
    1684-1693

    A hardware accelerator for a raster-based design-rule checking called BITDRC for a bit-mapping CAD system is described. BITDRC is a special-purpose hardware accelerator which performs design-rule checking for the Manhattan layout style VLSI circuis, much faster than the software checking which belonged to the bit-mapping CAD system before. The bit-mapping CAD system had effectively been developed for both of educational and VLSI design purposes, and just needs only a personal computer as a compact working environment. The proposed hardware architecture is rather simply and characterized by the bit-mapping CAD system where it works on. The hardware architecture and checking algorithm have been confirmed by implementing a bread-board prototype using discrete components. As a result, the processing time of BITDRC is speeded up as much as 500 times faster than the original software and takes only 4 seconds for checking every rule on a(15001500) grids layout pattern. BITDRC performs the error checking together with the data scanning that makes it can be as an on-line design-rule checker for the bit-mapping CAD system. Finally, the physical layout of BITDRC has been designed using a conventional CMOS technology.