The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] redundant faults(3hit)

1-3hit
  • Synthesis for Testability of Synchronous Sequential Circuits with Strong-Connectivity Using Undefined States on State Transition Graph

    Soo-Hyun KIM  Ho-Yong CHOI  Kiseon KIM  Dong-Ik LEE  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3216-3223

    In this paper, usage of undefined states on a State Transition Graph (STG) is addressed to obtain high fault coverage, in the area of Synthesis For Testability (SFT) of synchronous sequential circuits. Basically, a given STG could be modified by adding undefined states and distinguishable transitions so that each state might be included in one strongly-connected component as much as possible. Such modification decreases the number of redundant faults caused by the existence of unreachable states on an STG. For the modification, we propose two algorithms for both incompletely-specified STGs and completely-specified STGs, respectively. In case of incompletely-specified STGs, undefined states are added using unspecified transitions of defined states. In case of completely-specified STGs, undefined states are added by changing transitions specified on an STG while preserving state equivalence. Experimental results with MCNC benchmarks show that the number of redundant faults of gate-level circuits synthesized by our modified STGs are reduced, resulting in high fault coverage as well as short test generation time

  • Efficient Test Generation Using Redundancy Identification

    Sangyoon HAN  Sungho KANG  

     
    LETTER-Fault Tolerance

      Vol:
    E83-D No:9
      Page(s):
    1814-1815

    To accomplish an efficient test pattern generation, the isomorphism identification algorithm and the pseudo dominator identification algorithm are developed which are used to identify redundant faults efficiently. Results show that test pattern generation using these algorithms is very efficient.

  • A Study for Testability of Redundant Faults in Combinational Circuits Using Delay Effects

    Xiangqiu YU  Hiroshi TAKAHASHI  Yuzo TAKAMATSU  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    822-829

    Some undetectable stuck-at faults called the redundant faults are included in practical combinational circuits. The redundant fault does not affect the functional behavior of the circuit even if it exists. The redundant fault, however, causes undesirable effects to the circuit such as increase of delay time and decrease of testability of the circuit. It is considered that some redundant faults may cause the logical defects in the future. In this paper, firstly, we study the testability of the redundant fault in the combinational circuit by using delay effects. Secondly, we propose a method for generating a test-pair of a redundant fault by using an extended seven-valued calculus, called TGRF (Test-pair Generation for Redundant Fault). TGRF generates a dynamically sensitizable path for the target line which propagates the change in the value on the target line to a primary output. Finally, we show experimental results on the benchmark circuits under the assumptions of the unit delay and the fanout weighted delay models. It shows that test-pairs for some redundant faults are generated theoretically.