The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] resistive mixer(2hit)

1-2hit
  • Millimeter-Wave Broadband Mixers in New Testing and Measurement Instruments for High Data Rate Signal Analyses

    Masayuki KIMISHIMA  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1973-1980

    The millimeter-wave (MMW) broadband mixers that are useful for measurement instruments to analyze MMW high data rate signals have been investigated. At first, we propose the specialized RF front-end for analyses of MMW high data rate signals. Next, the required specifications for the 1st mixers of the front-end are estimated, and the design, fabrication, and testing results of Q, V, and W-band monolithic broadband resistive mixers are described. The testing results are compared with performances of the diode mixer designed for V-band. It was found that the resistive mixers have very attractive performances of low conversion loss, good frequency flatness and high third order intercept point (IP3) with low Local (LO) oscillators power. The developed resistive mixers are suitable for the proposed MMW band measurement instruments.

  • Analyses on Monolithic InP HEMT Resistive Mixer Operating under Very Low LO Power

    Takuo KASHIWA  Kazuya YAMAMOTO  Takayuki KATOH  Takao ISHIDA  Takahide ISHIKAWA  Yasuo MITSUI  Yoshikazu NAKAYAMA  

     
    PAPER-Electronic Circuits

      Vol:
    E82-C No:10
      Page(s):
    1831-1838

    This paper describes numerical analyses of resistive mixer operation, followed by measured performances of a V-band (50 - 75 GHz) monolithic InP HEMT resistive mixer operable with a very low LO power. Our model assumes that the channel conductance of the InP HEMT can be described by three linear functions according to the applied gate voltage. The calculated results obtained with the model have shown that the LO power level required for mixer operation is determined by the gate bias voltage and that a device with abrupt conductance shifts is suited to low LO power operation for a resistive mixer. It is also shown that conversion loss saturation of a resistive mixer is caused by its channel conductance saturation. A V-band monolithic resistive mixer has been designed and fabricated using Coplanar Waveguides (CPW) and a 0.15 mm InP HEMT with abrupt channel shifts. Good agreement between measured and simulated conversion losses are obtained. A minimum conversion loss of 8.4 dB is achieved at the 55 GHz RF-frequency and the -2 dBm LO power. It also exhibits an excellent IF output linearity to allow the 1 dB compression RF input level to be comparable with LO power, indicating good intermodulation performance. It is demonstrated that the proposed simple model of the channel conductance can easily calculate conversion characteristics of a resistive mixer with high accuracy.