The search functionality is under construction.

Keyword Search Result

[Keyword] scaleability(2hit)

1-2hit
  • Scalable 3-Stage ATM Switch Architecture Using Optical WDM Grouped Links Based on Dynamic Bandwidth Sharing

    Kohei NAKAI  Eiji OKI  Naoaki YAMANAKA  

     
    PAPER-Packet and ATM Switching

      Vol:
    E82-B No:2
      Page(s):
    265-270

    This paper proposes a 3-stage ATM switch architecture that uses optical WDM (wavelength division multiplexing) grouped links and dynamic bandwidth sharing. The proposed architecture has two features. The first is the use of WDM technology which makes the number of cables used in the system proportional to system size. The second is the use of dynamic bandwidth sharing among WDM grouped links. This prevents the statistical multiplexing gain offered by WDM from falling even if switching system becomes large. A performance evaluation confirms the scaleability and cost-effectiveness of the proposed architecture. It is scaleable in terms of the number of cables and admissible load. We show how the appropriate wavelength signal speed can be determined to implement the switch in a cost-effective manner. Therefore, the proposed architecture will suit future high-speed multimedia ATM networks.

  • Scalable 3-Stage ATM Switch Architecture Using Optical WDM Grouped Links Based on Dynamic Bandwidth Sharing

    Kohei NAKAI  Eiji OKI  Naoaki YAMANAKA  

     
    PAPER-Packet and ATM Switching

      Vol:
    E82-C No:2
      Page(s):
    213-218

    This paper proposes a 3-stage ATM switch architecture that uses optical WDM (wavelength division multiplexing) grouped links and dynamic bandwidth sharing. The proposed architecture has two features. The first is the use of WDM technology which makes the number of cables used in the system proportional to system size. The second is the use of dynamic bandwidth sharing among WDM grouped links. This prevents the statistical multiplexing gain offered by WDM from falling even if switching system becomes large. A performance evaluation confirms the scaleability and cost-effectiveness of the proposed architecture. It is scaleable in terms of the number of cables and admissible load. We show how the appropriate wavelength signal speed can be determined to implement the switch in a cost-effective manner. Therefore, the proposed architecture will suit future high-speed multimedia ATM networks.