The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] scattering parameters(7hit)

1-7hit
  • Analysis of Antenna Performance Degradation due to Coupled Electromagnetic Interference from Nearby Circuits

    Hosang LEE  Jawad YOUSAF  Kwangho KIM  Seongjin MUN  Chanseok HWANG  Wansoo NAH  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2019/08/27
      Vol:
    E103-C No:3
      Page(s):
    110-118

    This paper analyzes and compares two methods to estimate electromagnetically coupled noises introduced to an antenna due to the nearby circuits at a circuit design stage. One of them is to estimate the power spectrum, and the other one is to estimate the active S11 parameter at the victim antenna, respectively, and both of them use simulated standard S-parameters for the electromagnetic coupling in the circuit. They also need the assumed or measured excitation of noise sources. To confirm the validness of the two methods, an evaluation board consisting of an antenna and noise sources were designed and fabricated in which voltage controlled oscillator (VCO) chips are placed as noise sources. The generated electromagnetic noises are transferred to an antenna via loop-shaped transmission lines, degrading the performance of the antenna. In this paper, detailed analysis procedures are described using the evaluation board, and it is shown that the two methods are equivalent to each other in terms of the induced voltages in the antenna. Finally, a procedure to estimate antenna performance degradation at the design stage is summarized.

  • Low Cost, High Performance of Coplanar Waveguide Fabricated by Screen Printing Technology Open Access

    Masahiro HORIBE  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1094-1099

    This paper presents an innovative fabrication process for a planar circuits at millimeter-wave frequency. Screen printing technology provides low cost and high performance coplanar waveguides (CPW) lines in planar devices operated at millimeter-wave frequency up to 110GHz. Printed transmission lines provide low insertion losses of 0.30dB/mm at 110GHz and small return loss like as impedance standard lines. In the paper, Multiline Thru-Reflect-Line (TRL) calibration was also demonstrated by using the impedance standard substrates (ISS) fabricated by screen printing. Regarding calibration capability validation, verification devices were measured and compare the results to the result obtained by the TRL calibration using commercial ISS. The comparison results obtained by calibration of screen printing ISS are almost the same as results measured based on conventional ISS technology.

  • Frequency-Dependent Rectangular TE30-to-TE10 Mode Converter

    Yoshihiro KOKUBO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:11
      Page(s):
    1794-1797

    Dielectric rod arrays in a metallic waveguide alter the propagation modes and group velocities of electromagnetic waves. We have focused on TE30-to-TE10 mode converters and investigated how their behavior varies with frequency. A mode converter is proposed that passes the TE10 mode at frequencies lower than 2fc, and converts the TE30 mode into the TE10 mode for frequencies higher than 3fc.

  • Rectangular TE30 to TE10 Mode Converter

    Yoshihiro KOKUBO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E92-C No:8
      Page(s):
    1087-1090

    A new type of mode converter that converts TE30 to TE10 mode is proposed. As an example of the ease of fabrication, holes can be drilled at the top of a metallic waveguide and dielectric rods inserted. This converter is useful for application as a power divider or power combiner.

  • Comparing the Performance of MMIC Matrix and Distributed Amplifiers

    Emad HAMIDI  Mahmoud MOHAMMAD-TAHERI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:10
      Page(s):
    2057-2061

    A comparison is made between the performance of the MMIC matrix and distributed amplifiers. It has been shown that based on the analytical formulations, in most typical cases a cascaded dual stage distributed amplifier has more gain than that of a two-tier matrix amplifier with the same number of transistors; however the difference is not significant. Results of the analytical approach are then compared with the simulated and the measured results and a good agreement between the results has been obtained. Then other scattering parameters of the matrix and distributed amplifiers have been compared.

  • An Efficient Analysis of Lossless and Lossy Discontinuities in Waveguide Using Hybrid Numerical Method

    Takeshi SHIRAISHI  Toshio NISHIKAWA  Kikuo WAKINO  Toshihide KITAZAWA  

     
    PAPER

      Vol:
    E86-C No:11
      Page(s):
    2184-2190

    A novel hybrid numerical method, which is based on the extended spectral domain approach combined with the mode-matching method, is applied to evaluate the scattering parameter of waveguide discontinuities. The formulation procedure utilizes the biorthogonal relation in the transformation, and the Green's functions in the spectral domain are obtained easily even in the inhomogeneous lossy regions. The present method does not include the approximate perturbational scheme, and it can evaluate accurately and stably the scattering parameters of either for the thin or thick obstacles made of the wide variety of materials, the lossless dielectrics to highly conductive media, in short computation time. The physical phenomena of transmission through the lossy obstacles are investigated by numerical computations. The results are compared with FEM where FEM computations are feasible, although the FEM computations cannot cover the whole performances of the present method. The good agreement is observed in the corresponding range. The matrix size in this method is smaller than that of other methods. Therefore, the present method is numerically efficient and it would be able to apply for the integrated evaluation of a successive discontinuity. The resonant characteristics of rectangular waveguide cavity are analyzed accurately taking the conductor losses into consideration.

  • Design Formulae for Microwave Amplifiers Employing Conditionally-Stable Transistors

    Kimberley W. ECCLESTON  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1054-1060

    When designing microwave amplifiers, it is the task to select values of the source (input generator) and load reflection coefficients for the transistor, to achieve certain amplifier performance requirements and ensure stability. For unconditionally stable transistors, simultaneous conjugate matching can be achieved using well-known design formulae. Under this condition, the gain is maximised, and the input and output ports are matched. On the other hand when the transistor is conditionally stable, source and load reflection coefficients are selected using graphical design methods, involving gain and stability circles. To eliminate the reliance on graphical techniques, this paper shows the derivation of explicit design formulae that ensure maximum gain for a minimum specified safety margin, with one port matched. In this work, the safety margin is the distance between the chosen source or load reflection coefficient and its respective stability circle. In a production environment, where the circuit and transistor parameters are subject to random variations, the safety margin therefore makes allowance for such variations. This paper shows that the design problem for conditionally stable transistors can be reduced from the selection of values for two complex variables (port terminations) to the selection of the value for just one scalar variable.