The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] shape model(8hit)

1-8hit
  • Automatic Recognition of Mycobacterium Tuberculosis Based on Active Shape Model

    Chao XU  Dongxiang ZHOU  Tao GUAN  Yongping ZHAI  Yunhui LIU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/08
      Vol:
    E99-D No:4
      Page(s):
    1162-1171

    This paper realized the automatic recognition of Mycobacterium tuberculosis in Ziehl-Neelsen stained images by the conventional light microscopy, which can be used in the computer-aided diagnosis of the tuberculosis. We proposed a novel recognition method based on active shape model. First, the candidate bacillus objects are segmented by a method of marker-based watershed transform. Next, a point distribution model of the object shape is proposed to label the landmarks on the object automatically. Then the active shape model is performed after aligning the training set with a weight matrix. The deformation regulation of the object shape is discovered and successfully applied in recognition without using geometric and other commonly used features. During this process, a width consistency constraint is combined with the shape parameter to improve the accuracy of the recognition. Experimental results demonstrate that the proposed method yields high accuracy in the images with different background colors. The recognition accuracy in object level and image level are 92.37% and 97.91% respectively.

  • Robust Face Alignment with Random Forest: Analysis of Initialization, Landmarks Regression, and Shape Regularization Methods

    Chun Fui LIEW  Takehisa YAIRI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/10/27
      Vol:
    E99-D No:2
      Page(s):
    496-504

    Random forest regressor has recently been proposed as a local landmark estimator in the face alignment problem. It has been shown that random forest regressor can achieve accurate, fast, and robust performance when coupled with a global face-shape regularizer. In this paper, we extend this approach and propose a new Local Forest Classification and Regression (LFCR) framework in order to handle face images with large yaw angles. Specifically, the LFCR has an additional classification step prior to the regression step. Our experiment results show that this additional classification step is useful in rejecting outliers prior to the regression step, thus improving the face alignment results. We also analyze each system component through detailed experiments. In addition to the selection of feature descriptors and several important tuning parameters of the random forest regressor, we examine different initialization and shape regularization processes. We compare our best outcomes to the state-of-the-art system and show that our method outperforms other parametric shape-fitting approaches.

  • A Survey on Statistical Modeling and Machine Learning Approaches to Computer Assisted Medical Intervention: Intraoperative Anatomy Modeling and Optimization of Interventional Procedures Open Access

    Ken'ichi MOROOKA  Masahiko NAKAMOTO  Yoshinobu SATO  

     
    SURVEY PAPER-Computer Assisted Medical Intervention

      Vol:
    E96-D No:4
      Page(s):
    784-797

    This paper reviews methods for computer assisted medical intervention using statistical models and machine learning technologies, which would be particularly useful for representing prior information of anatomical shape, motion, and deformation to extrapolate intraoperative sparse data as well as surgeons' expertise and pathology to optimize interventions. Firstly, we present a review of methods for recovery of static anatomical structures by only using intraoperative data without any preoperative patient-specific information. Then, methods for recovery of intraoperative motion and deformation are reviewed by combining intraoperative sparse data with preoperative patient-specific stationary data, which is followed by a survey of articles which incorporated biomechanics. Furthermore, the articles are reviewed which addressed the used of statistical models for optimization of interventions. Finally, we conclude the survey by describing the future perspective.

  • Model-Based Approach to Recognize the Rectus Abdominis Muscle in CT Images Open Access

    Naoki KAMIYA  Xiangrong ZHOU  Huayue CHEN  Chisako MURAMATSU  Takeshi HARA  Hiroshi FUJITA  

     
    LETTER-Medical Image Processing

      Vol:
    E96-D No:4
      Page(s):
    869-871

    Our purpose in this study is to develop a scheme to segment the rectus abdominis muscle region in X-ray CT images. We propose a new muscle recognition method based on the shape model. In this method, three steps are included in the segmentation process. The first is to generate a shape model for representing the rectus abdominis muscle. The second is to recognize anatomical feature points corresponding to the origin and insertion of the muscle, and the third is to segment the rectus abdominis muscles using the shape model. We generated the shape model from 20 CT cases and tested the model to recognize the muscle in 10 other CT cases. The average value of the Jaccard similarity coefficient (JSC) between the manually and automatically segmented regions was 0.843. The results suggest the validity of the model-based segmentation for the rectus abdominis muscle.

  • Enhanced Distal Radius Segmentation in DXA Using Modified ASM

    Sihyoung LEE  Sunil CHO  Yong Man RO  

     
    PAPER-Biological Engineering

      Vol:
    E94-D No:2
      Page(s):
    363-370

    The active shape model (ASM) has been widely adopted by automated bone segmentation approaches for radiographic images. In radiographic images of the distal radius, multiple edges are often observed in the near vicinity of the bone, typically caused by the presence of thin soft tissue. The presence of multiple edges decreases the segmentation accuracy when segmenting the distal radius using ASM. In this paper, we propose an enhanced distal radius segmentation method that makes use of a modified version of ASM, reducing the number of segmentation errors. To mitigate segmentation errors, the proposed method emphasizes the presence of the bone edge and downplays the presence of a soft tissue edge by making use of Dual energy X-ray absorptiometry (DXA). To verify the effectiveness of the proposed segmentation method, experiments were performed with 30 distal radius patient images. For the images used, compared to ASM-based segmentation, the proposed method improves the segmentation accuracy with 47.4% (from 0.974 mm to 0.512 mm).

  • Moments Added Statistical Shape Model for Boundary Extraction

    Haechul CHOI  Ho Chul SHIN  Si-Woong LEE  Yun-Ho KO  

     
    LETTER-Pattern Recognition

      Vol:
    E92-D No:12
      Page(s):
    2524-2526

    In this paper, we propose a method for extracting an object boundary from a low-quality image such as an infrared one. To take full advantage of a training set, the overall shape is modeled by incorporating statistical characteristics of moments into the point distribution model (PDM). Furthermore, a differential equation for the moment of overall shape is derived for shape refinement, which leads to accurate and rapid deformation of a boundary template toward real object boundary. The simulation results show that the proposed method has better performance than conventional boundary extraction methods.

  • Robust Active Shape Model Using AdaBoosted Histogram Classifiers and Shape Parameter Optimization

    Yuanzhong LI  Wataru ITO  

     
    PAPER-Shape Models

      Vol:
    E89-D No:7
      Page(s):
    2117-2123

    Active Shape Model (ASM) has been shown to be a powerful tool to aid the interpretation of images, especially in face alignment. ASM local appearance model parameter estimation is based on the assumption that residuals between model fit and data have a Gaussian distribution. Moreover, to generate an allowable face shape, ASM truncates coefficients of shape principal components into the bounds determined by eigenvalues. In this paper, an algorithm of modeling local appearances, called AdaBoosted ASM, and a shape parameter optimization method are proposed. In the algorithm of modeling the local appearances, we describe our novel modeling method by using AdaBoosted histogram classifiers, in which the assumption of the Gaussian distribution is not necessary. In the shape parameter optimization, we describe that there is an inadequacy on controlling shape parameters in ASM, and our novel method on how to solve it. Experimental results demonstrate that the AdaBoosted histogram classifiers improve robustness of landmark displacement greatly, and the shape parameter optimization solves the inadequacy problem of ASM on shape constraint effectively.

  • Web-based Constructive Shape Modeling Using Real Distance Functions

    Pierre-Alain FAYOLLE  Benjamin SCHMITT  Yuichiro GOTO  Alexander PASKO  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    828-835

    We present an approach and a web-based system implementation for modeling shapes using real distance functions. The system consists of an applet supporting the HyperFun modeling language. The applet is extended with primitives defined by Euclidean distance from a point to the surface of the shape. Set-theoretic operations (union, intersection, difference) that provide an approximation of the Euclidean distance to a shape built in a constructive way are introduced. Such operations have a controllable error of the exact Euclidean distance to the shape and preserve C1 continuity of the overall function, which is an important condition for further operations and applications. The proposed system should help model various shapes, store them in a concise form, and exchange them easily between different entities on a network. The applet offers also the possibility to export the models defined in the HyperFun language to other formats for raytracing or rapid prototyping.