1-2hit |
Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.
Ze Fu GAO Hai Cheng TAO Qin Yu ZHU Yi Wen JIAO Dong LI Fei Long MAO Chao LI Yi Tong SI Yu Xin WANG
Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.