The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] signature(281hit)

41-60hit(281hit)

  • On Fail-Stop Signature Schemes with H-EUC Security

    Masahiro NOMURA  Katsuhiro NAKAMURA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    125-147

    Fail-Stop Signature (FSS) scheme is a signature scheme which satisfies unforgeability even against a forger with super-polynomial computational power (i.e. even against a forger who can compute acceptable signatures) and non-repudiability against a malicious signer with probabilistic polynomial time computational power (i.e. a PPT malicious signer). In this paper, under some settings, the equivalence relation has been derived between a set of security properties when single FSS scheme is used singly and a security property called Universally Composable (UC) security when plural FSS schemes are concurrently used. Here, UC security is a security property guaranteeing that even when plural schemes are concurrently used, security properties of each scheme (for single scheme usage) are preserved. The above main settings are as follows. Firstly, H-EUC (Externalized UC) security is introduced instead of “conventional” UC security, where a new helper functionality H is constructed appropriately. It is because that we can derive “conventional” UC security cannot hold for FSS schemes when malicious parties (e.g. a forger and a malicious signer) have super-polynomial computational power. In the environment where the above helper functionality H is used, all parties are PPT, but only a forger may compute acceptable signatures by obtaining some additional information from H. Secondly, the definition of unforgeability (in a set of security properties for single FSS scheme usage) is revised to match the above environment. The above equivalence relation derived under the above settings guarantees that even when plural FSS schemes are concurrently used, those security properties for single scheme usage are preserved, provided that some conditions hold. In particular, the equivalence relation in this paper has originality in terms of guaranteeing that unforgeability is preserved even against a forger who is PPT but may compute acceptable signatures. Furthermore, it has been firstly proved in this paper that H-EUC security holds for an existing instantiation of an FSS scheme by Mashatan et al. From this, it can be said that the equivalence relation shown in this paper is practical.

  • On the RKA Security of the Standard-Model-Based BFKW Network Coding Signature Scheme

    Yanyan JI  Jinyong CHANG  Honglong DAI  Maozhi XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2477-2480

    Network coding signature (NCS) scheme is a cryptographic tool for network coding against pollution attacks. In [5], Chang et al. first introduced the related-key attack (RKA) to the NCS schemes and tried to give an instantiation of it. However, their instantiation is based on the random oracle (RO) model. In this letter, we present a standard-model instantiation. In particular, we prove that standard-model-based NCS scheme introduced by Boneh et al. in [4] (BFKW scheme, for short) can achieve Φ-RKA security if the underlying signature scheme is also Φ-RKA secure, where Φ is any family of functions defined on signing keys of NCS schemes.

  • Meeting Tight Security for Multisignatures in the Plain Public Key Model

    Naoto YANAI  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1484-1493

    Multisignatures are digital signatures for a group consisting of multiple signers where each signer signs common documents via interaction with its co-signers and the data size of the resultant signatures for the group is independent of the number of signers. In this work, we propose a multisignature scheme, whose security can be tightly reduced to the CDH problem in bilinear groups, in the strongest security model where nothing more is required than that each signer has a public key, i.e., the plain public key model. Loosely speaking, our main idea for a tight reduction is to utilize a three-round interaction in a full-domain hash construction. Namely, we surmise that a full-domain hash construction with three-round interaction will become tightly secure under the CDH problem. In addition, we show that the existing scheme by Zhou et al. (ISC 2011) can be improved to a construction with a tight security reduction as an application of our proof framework.

  • In-Storage Anti-Virus System via On-Demand Inspection

    Jaehwan LEE  Youngrang KIM  Ji Sun SHIN  

     
    LETTER-Computer System

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2132-2135

    We propose a new signature-based, on-demand anti-virus solution using in-storage processing (ISP) to inspect the inside of a storage device. In-storage anti-virus systems are able to isolate malicious effects from main computing platforms, and they reduce the system overhead for virus detection. We implement our in-storage anti-virus platform using cost-effective, open-source hardware, and we verify that is practically applicable to storage devices.

  • Implementing 128-Bit Secure MPKC Signatures

    Ming-Shing CHEN  Wen-Ding LI  Bo-Yuan PENG  Bo-Yin YANG  Chen-Mou CHENG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:3
      Page(s):
    553-569

    Multivariate Public Key Cryptosystems (MPKCs) are often touted as future-proofing against Quantum Computers. In 2009, it was shown that hardware advances do not favor just “traditional” alternatives such as ECC and RSA, but also makes MPKCs faster and keeps them competitive at 80-bit security when properly implemented. These techniques became outdated due to emergence of new instruction sets and higher requirements on security. In this paper, we review how MPKC signatures changes from 2009 including new parameters (from a newer security level at 128-bit), crypto-safe implementations, and the impact of new AVX2 and AESNI instructions. We also present new techniques on evaluating multivariate polynomials, multiplications of large finite fields by additive Fast Fourier Transforms, and constant time linear solvers.

  • Identification of Pedestrian and Bicyclist through Range Micro Doppler Signatures

    Yangyu FAN  Rui DU  Jianshu WANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/11/07
      Vol:
    E101-D No:2
      Page(s):
    552-555

    Identification of urban road targets using radar systems is usually heavily dependent on the aspect angle between the target velocity and line of sight of the radar. To improve the performance of the classification result when the target is in a cross range position relative to the radar, a method based on range micro Doppler signature is proposed in this paper. Joint time-frequency analysis is applied in every range cell to extract the time Doppler signature. The spectrograms from all of the target range cells are combined to form the range micro Doppler signature to allow further identification. Experiments were conducted to investigate the performance of the proposed method, and the results proved the effectiveness of the method presented.

  • Tighter Reductions for Deterministic Identity-Based Signatures

    Naoto YANAI  Toru FUJIWARA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    64-76

    Deterministic ID-based signatures are digital signatures where secret keys are probabilistically generated by a key generation center while the signatures are generated deterministically. Although the deterministic ID-based signatures are useful for both systematic and cryptographic applications, to the best of our knowledge, there is no scheme with a tight reduction proof. Loosely speaking, since the security is downgraded through dependence on the number of queries by an adversary, a tighter reduction for the security of a scheme is desirable, and this reduction must be as close to the difficulty of its underlying hard problem as possible. In this work, we discuss mathematical features for a tight reduction of deterministic ID-based signatures, and show that the scheme by Selvi et al. (IWSEC 2011) is tightly secure by our new proof framework under a selective security model where a target identity is designated in advance. Our proof technique is versatile, and hence a reduction cost becomes tighter than the original proof even under an adaptive security model. We furthermore improve the scheme by Herranz (The Comp. Jour., 2006) to prove tight security in the same manner as described above. We furthermore construct an aggregate signature scheme with partial aggregation, which is a key application of deterministic ID-based signatures, from the improved scheme.

  • On Randomness Exposure Resilience of Group Signatures

    Tomoyoshi ONO  Kazuki YONEYAMA  

     
    PAPER-Privacy, anonymity, and fundamental theory

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2357-2367

    Group signature (GS) schemes guarantee anonymity of the actual signer among group members. Previous GS schemes assume that randomness in signing is never exposed. However, in the real world, full randomness exposure can be caused by implementation problems (e.g., using a bad random number generator). In this paper, we study (im)possibility of achieving anonymity against full randomness exposure. First, we formulate a new security model for GS schemes capturing full randomness exposure. Next, we clarify that it is impossible to achieve full-anonymity against full randomness exposure without any secure component (e.g., a tamper-proof module or a trusted outside storage). Finally, we show a possibility result that selfless-anonymity can be achieved against full randomness exposure. While selfless-anonymity is weaker than full-anonymity, it is strong enough in practice. Our transformation is quite simple; and thus, previous GS schemes used in real-world systems can be easily replaced by a slight modification to strengthen the security.

  • Group Signature with Deniability: How to Disavow a Signature

    Ai ISHIDA  Keita EMURA  Goichiro HANAOKA  Yusuke SAKAI  Keisuke TANAKA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1825-1837

    Group signatures are a class of digital signatures with enhanced privacy. By using this type of signature, a user can sign a message on behalf of a specific group without revealing his identity, but in the case of a dispute, an authority can expose the identity of the signer. However, it is not always the case that we need to know the specific identity of a signature. In this paper, we propose the notion of deniable group signatures, where the authority can issue a proof showing that the specified user is NOT the signer of a signature, without revealing the actual signer. We point out that existing efficient non-interactive zero-knowledge proof systems cannot be straightforwardly applied to prove such a statement. We circumvent this problem by giving a fairly practical construction through extending the Groth group signature scheme (ASIACRYPT 2007). In particular, a denial proof in our scheme consists of 96 group elements, which is about twice the size of a signature in the Groth scheme. The proposed scheme is provably secure under the same assumptions as those of the Groth scheme.

  • Signatures from Trapdoor Commitments with Strong Openings

    Goichiro HANAOKA  Jacob C. N. SCHULDT  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1924-1931

    In this paper, we propose a new generic construction of signatures from trapdoor commitments with strong openings in the random oracle model. Our construction is very efficient in the sense that signatures consist of just a single decommitment of the underlying commitment scheme, and verification corresponds to verifying this decommitment against a commitment derived via a hash function. Furthermore, assuming the commitment scheme provides sufficiently strong statistical hiding and trapdoor opening properties, the reduction of the security of the signature scheme to the binding property of the commitment scheme is tight. To instantiate our construction, we propose two new commitment schemes with strong openings. Both of these are statistically hiding, and have binding properties based on a Diffie-Hellman inversion problem and factoring, respectively. The signature schemes obtained from these are very efficient; the first matches the performance of BLS signatures, which currently provides the shortest signatures, and the second provides signatures of similar length to the shortest version of Rabin-Williams signatures while still being tightly related to factoring.

  • Provably Secure Structured Signature Schemes with Tighter Reductions

    Naoto YANAI  Tomoya IWASAKI  Masaki INAMURA  Keiichi IWAMURA  

     
    PAPER

      Vol:
    E100-A No:9
      Page(s):
    1870-1881

    Structured signatures are digital signatures where relationship between signers is guaranteed in addition to the validity of individually generated data for each signer, and have been expected for the digital right management. Nevertheless, we mention that there is no scheme with a tight security reduction, to the best of our knowledge. Loosely speaking, it means that the security is downgraded against an adversary who obtains a large amount of signatures. Since contents are widely utilized in general, achieving a tighter reduction is desirable. Based on this background, we propose the first structured signature scheme with a tight security reduction in the conventional public key cryptography and the one with a rigorous reduction proof in the ID-based cryptography via our new proof method. Moreover, the security of our schemes can be proven under the CDH assumption which is the most standard. Our schemes are also based on bilinear maps whose implementation can be provided via well-known cryptographic libraries.

  • Multi-Group Signature Scheme for Simultaneous Verification by Neighbor Services

    Kenta NOMURA  Masami MOHRI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER-Cryptographic Schemes

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1770-1779

    We focus on the construction of the digital signature scheme for local broadcast, which allows the devices with limited resources to securely transmit broadcast message. A multi-group authentication scheme that enables a node to authenticate its membership in multi verifiers by the sum of the secret keys has been proposed for limited resources. This paper presents a transformation which converts a multi-group authentication into a multi-group signature scheme. We show that the multi-group signature scheme converted by our transformation is existentially unforgeable against chosen message attacks (EUF-CMA secure) in the random oracle model if the multi-group authentication scheme is secure against impersonation under passive attacks (IMP-PA secure). In the multi-group signature scheme, a sender can sign a message by the secret keys which multiple certification authorities issue and the signature can validate the authenticity and integrity of the message to multiple verifiers. As a specific configuration example, we show the example in which the multi-group signature scheme by converting an error correcting code-based multi-group authentication scheme.

  • Revocable Group Signatures with Compact Revocation List Using Vector Commitments

    Shahidatul SADIAH  Toru NAKANISHI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:8
      Page(s):
    1672-1682

    A group signature allows any group member to anonymously sign a message. One of the important issues is an efficient membership revocation. The scheme proposed by Libert et al. has achieved O(1) signature and membership certificate size, O(1) signing and verification times, and O(log N) public key size, where N is the total number of members. However the Revocation List (RL) data is large, due to O(R) signatures in RL, where R is the number of revoked members. The scheme proposed by Nakanishi et al. achieved a compact RL of O(R/T) signatures for any integer T. However, this scheme increases membership certificate size by O(T). In this paper, we extend the scheme proposed by Libert et al., by reducing the RL size to O(R/T) using a vector commitment to compress the revocation entries, while O(1) membership certificate size remains.

  • Variations of Even-Goldreich-Micali Framework for Signature Schemes

    Masayuki ABE  

     
    INVITED PAPER

      Vol:
    E100-A No:1
      Page(s):
    12-17

    The Even-Goldreich-Micali framework is a generic method for constructing secure digital signature schemes from weaker signature schemes and one-time signature schemes. Several variations are known due to properties demanded on the underlying building blocks. It is in particular interesting when the underlying signature scheme is a so-called F-signature scheme that admits different message spaces for signing and verification. In this paper we overview these variations in the literature and add a new one to the bucket.

  • Semantic Motion Signature for Segmentation of High Speed Large Displacement Objects

    Yinhui ZHANG  Zifen HE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/10/05
      Vol:
    E100-D No:1
      Page(s):
    220-224

    This paper presents a novel method for unsupervised segmentation of objects with large displacements in high speed video sequences. Our general framework introduces a new foreground object predicting method that finds object hypotheses by encoding both spatial and temporal features via a semantic motion signature scheme. More specifically, temporal cues of object hypotheses are captured by the motion signature proposed in this paper, which is derived from sparse saliency representation imposed on magnitude of optical flow field. We integrate semantic scores derived from deep networks with location priors that allows us to directly estimate appearance potentials of foreground hypotheses. A unified MRF energy functional is proposed to simultaneously incorporate the information from the motion signature and semantic prediction features. The functional enforces both spatial and temporal consistency and impose appearance constancy and spatio-temporal smoothness constraints directly on the object hypotheses. It inherently handles the challenges of segmenting ambiguous objects with large displacements in high speed videos. Our experiments on video object segmentation benchmarks demonstrate the effectiveness of the proposed method for segmenting high speed objects despite the complicated scene dynamics and large displacements.

  • On the Security of Schnorr Signatures, DSA, and ElGamal Signatures against Related-Key Attacks

    Hiraku MORITA  Jacob C.N. SCHULDT  Takahiro MATSUDA  Goichiro HANAOKA  Tetsu IWATA  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    73-90

    In the ordinary security model for signature schemes, we consider an adversary that tries to forge a signature on a new message using only his knowledge of other valid message and signature pairs. To take into account side channel attacks such as tampering or fault-injection attacks, Bellare and Kohno (Eurocrypt 2003) formalized related-key attacks (RKA), where stronger adversaries are considered. In the RKA security model for signature schemes, we consider an adversary that can also manipulate the signing key and obtain signatures computed under the modified key. RKA security is defined with respect to the related-key deriving functions which are used by an adversary to manipulate the signing key. This paper considers RKA security of three established signature schemes: the Schnorr signature scheme, a variant of DSA, and a variant of ElGamal signature scheme. First, we show that these signature schemes are secure against a weak notion of RKA with respect to polynomial functions. Second, we demonstrate that, on the other hand, none of the Schnorr signature scheme, DSA, nor the ElGamal signature scheme achieves the standard notion of RKA security with respect to linear functions, by showing concrete attacks on these. Lastly, we show that slight modifications of the Schnorr signature scheme, (the considered variant of) DSA, and the variant of ElGamal signature scheme yield fully RKA secure schemes with respect to polynomial functions.

  • Comparison of Two Signature Schemes Based on the MQ Problem and Quartz

    Routo TERADA  Ewerton R. ANDRADE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E99-A No:12
      Page(s):
    2527-2538

    Patarin proposed a crytographic trapdoor called Hidden Field Equation (HFE), a trapdoor based on the Multivariate Quadratic (MQ) and the Isomorphism of Polynomials (IP) problems. The MQ problem was proved by Patarin et al.'s to be NP-complete. Although the basic HFE has been proved to be vulnerable to attacks, its variants obtained by some modifications have been proved to be stronger against attacks. The Quartz digital signature scheme based on the HFEv- trapdoor (a variant of HFE) with particular choices of parameters, has been shown to be stronger against algebraic attacks to recover the private key. Furthermore, it generates reasonably short signatures. However, Joux et al. proved (based on the Birthday Paradox Attack) that Quartz is malleable in the sense that, if an adversary gets a valid pair of message and signature, a valid signature to another related message is obtainable with 250 computations and 250 queries to the signing oracle. Currently, the recommended minimum security level is 2112. Our signature scheme is also based on Quartz but we achieve a 2112 security level against Joux et al.'s attack. It is also more efficient in signature verification and vector initializations. Furthermore, we implemented both the original and our improved Quartz signature and run empirical comparisons.

  • Comparing Performance of Hierarchical Identity-Based Signature Schemes

    Peixin CHEN  Yilun WU  Jinshu SU  Xiaofeng WANG  

     
    LETTER-Information Network

      Pubricized:
    2016/09/01
      Vol:
    E99-D No:12
      Page(s):
    3181-3184

    The key escrow problem and high computational cost are the two major problems that hinder the wider adoption of hierarchical identity-based signature (HIBS) scheme. HIBS schemes with either escrow-free (EF) or online/offline (OO) model have been proved secure in our previous work. However, there is no much EF or OO scheme that has been evaluated experimentally. In this letter, several EF/OO HIBS schemes are considered. We study the algorithmic complexity of the schemes both theoretically and experimentally. Scheme performance and practicability of EF and OO models are discussed.

  • LigeroAV: A Light-Weight, Signature-Based Antivirus for Mobile Environment

    Jaehwan LEE  Min Jae JO  Ji Sun SHIN  

     
    LETTER-Information Network

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3185-3187

    Current signature-based antivirus solutions have three limitations such as the large volume of signature database, privacy preservation, and computation overheads of signature matching. In this paper, we propose LigeroAV, a light-weight, performance-enhanced antivirus, suitable for pervasive environments such as mobile phones. LigeroAV focuses on detecting MD5 signatures which are more than 90% of signatures. LigeroAV offloads matching computation in the cloud server with up-to-dated signature database while preserving privacy level using the Bloom filter.

  • Fast and Efficient Signature-Based Sub-Circuit Matching

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1355-1365

    This paper presents a new approach for circuit matching using signatures. We have defined a signature based on topology of the fanin cones of the circuit elements. Given two circuits, first we find all the circuit elements with unique signature between the two input circuits. After that, we try to expand the matching area by our expansion rules as much as possible. We iteratively find the unique matches and expand the matching area until no further matching is possible. Our experiments on IWLS2005 benchmark suite show that our method is able to find the perfect matching between two 160,000-gate IP in 5 minutes. In addition, our method is more than one order of magnitude faster than our previous signature-based matching method, while the size of the matched area is comparable or larger.

41-60hit(281hit)