The search functionality is under construction.

Keyword Search Result

[Keyword] source localization(21hit)

1-20hit(21hit)

  • Single UAV-Based Wave Source Localization in NLOS Environments Open Access

    Shinichi MURATA  Takahiro MATSUDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/01
      Vol:
    E106-B No:12
      Page(s):
    1491-1500

    To localize an unknown wave source in non-line-of-sight environments, a wave source localization scheme using multiple unmanned-aerial-vehicles (UAVs) is proposed. In this scheme, each UAV estimates the direction-of-arrivals (DoAs) of received signals and the wave source is localized from the estimated DoAs by means of maximum likelihood estimation. In this study, by extending the concept of this scheme, we propose a novel wave source localization scheme using a single UAV. In the proposed scheme, the UAV moves on the path comprising multiple measurement points and the wave source is sequentially localized from DoA distributions estimated at these measurement points. At each measurement point, with a moving path planning algorithm, the UAV determines the next measurement point from the estimated DoA distributions and measurement points that the UAV has already visited. We consider two moving path planning algorithms, and validate the proposed scheme through simulation experiments.

  • A Robust Semidefinite Source Localization TDOA/FDOA Method with Sensor Position Uncertainties

    Zhengfeng GU  Hongying TANG  Xiaobing YUAN  

     
    PAPER-Sensing

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    472-480

    Source localization in a wireless sensor network (WSN) is sensitive to the sensors' positions. In practice, due to mobility, the receivers' positions may be known inaccurately, leading to non-negligible degradation in source localization estimation performance. The goal of this paper is to develop a semidefinite programming (SDP) method using time-difference-of arrival (TDOA) and frequency-difference-of-arrival (FDOA) by taking the sensor position uncertainties into account. Specifically, we transform the commonly used maximum likelihood estimator (MLE) problem into a convex optimization problem to obtain an initial estimation. To reduce the coupling between position and velocity estimator, we also propose an iterative method to obtain the velocity and position, by using weighted least squares (WLS) method and SDP method, respectively. Simulations show that the method can approach the Cramér-Rao lower bound (CRLB) under both mild and high noise levels.

  • An Improved Closed-Form Method for Moving Source Localization Using TDOA, FDOA, Differential Doppler Rate Measurements

    Zhixin LIU  Dexiu HU  Yongsheng ZHAO  Yongjun ZHAO  

     
    PAPER-Sensing

      Pubricized:
    2018/12/03
      Vol:
    E102-B No:6
      Page(s):
    1219-1228

    This paper proposes an improved closed-form method for moving source localization using time difference of arrival (TDOA), frequency difference of arrival (FDOA) and differential Doppler rate measurements. After linearizing the measurement equations by introducing three additional parameters, a rough estimate is obtained by using the weighted least-square (WLS) estimator. To further refine the estimate, the relationship between additional parameters and source location is utilized. The proposed method gives a final closed-form solution without iteration or the extra mathematics operations used in existing methods by employing the basic idea of WLS processing. Numerical examples show that the proposed method exhibits better robustness and performance compared with several existing methods.

  • Hyperparameter-Free Sparse Signal Reconstruction Approaches to Time Delay Estimation

    Hyung-Rae PARK  Jian LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/01/31
      Vol:
    E101-B No:8
      Page(s):
    1809-1819

    In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.

  • Bi-Direction Interaural Matching Filter and Decision Weighting Fusion for Sound Source Localization in Noisy Environments

    Hong LIU  Mengdi YUE  Jie ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2016/09/12
      Vol:
    E99-D No:12
      Page(s):
    3192-3196

    Sound source localization is an essential technique in many applications, e.g., speech enhancement, speech capturing and human-robot interaction. However, the performance of traditional methods degrades in noisy or reverberant environments, and it is sensitive to the spatial location of sound source. To solve these problems, we propose a sound source localization framework based on bi-direction interaural matching filter (IMF) and decision weighting fusion. Firstly, bi-directional IMF is put forward to describe the difference between binaural signals in forward and backward directions, respectively. Then, a hybrid interaural matching filter (HIMF), which is obtained by the bi-direction IMF through decision weighting fusion, is used to alleviate the affection of sound locations on sound source localization. Finally, the cosine similarity between the HIMFs computed from the binaural audio and transfer functions is employed to measure the probability of the source location. Constructing the similarity for all the spatial directions as a matrix, we can determine the source location by Maximum A Posteriori (MAP) estimation. Compared with several state-of-the-art methods, experimental results indicate that HIMF is more robust in noisy environments.

  • Estimation of the Acoustic Time Delay of Arrival by Adaptive Eigenvalue Decomposition with a Proportionate Step-Size Control and Direct-Path Constraint

    Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1622-1627

    Estimation of the time delay of arrival (TDOA) problem is important to acoustic source localization. The TDOA estimation problem is defined as finding the relative delay between several microphone signals for the direct sound. To estimate TDOA, the generalized cross-correlation (GCC) method is the most frequently used, but it has a disadvantage in terms of reverberant environments. In order to overcome this problem, the adaptive eigenvalue decomposition (AED) method has been developed, which estimates the room transfer function and finds the direct-path delay. However, the algorithm does not take into account the fact that the room transfer function is a sparse channel, and so sometimes the estimated transfer function is too dense, resulting in failure to exact direct-path and delay. In this paper, an enhanced AED algorithm that makes use of a proportionate step-size control and a direct-path constraint is proposed instead of a constant step size and the L2-norm constraint. The simulation results show that the proposed algorithm has enhanced performance as compared to both the conventional AED method and the phase-transform (PHAT) algorithm.

  • A Semidefinite Programming Approach to Source Localization Using Differential Received Signal Strength

    Yan Shen DU  Ping WEI  Hua Guo ZHANG  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:2
      Page(s):
    745-748

    In this work, the differential received signal strength based localization problem is addressed. Based on the measurement model, we present the constrained weighted least squares (CWLS) approach, which is difficult to be solved directly due to its nonconvex nature. However, by performing the semidefinite relaxation (SDR) technique, the CWLS problem can be relaxed into a semidefinite programming problem (SDP), which can be efficiently solved using modern convex optimization algorithms. Moreover, the SDR is proved to be tight, and hence ensures the corresponding SDP find the optimal solution of the original CWLS problem. Numerical simulations are included to corroborate the theoretical results and promising performance.

  • Region-Based Distributed Estimation Using Quantized Data

    Yoon Hak KIM  

     
    PAPER-Information Network

      Vol:
    E97-D No:12
      Page(s):
    3155-3162

    In this paper, we consider distributed estimation where the measurement at each of the distributed sensor nodes is quantized before being transmitted to a fusion node which produces an estimate of the parameter of interest. Since each quantized measurement can be linked to a region where the parameter is found, aggregating the information obtained from multiple nodes corresponds to generating intersections between the regions. Thus, we develop estimation algorithms that seek to find the intersection region with the maximum likelihood rather than the parameter itself. Specifically, we propose two practical techniques that facilitate fast search with significantly reduced complexity and apply the proposed techniques to a system where an acoustic amplitude sensor model is employed at each node for source localization. Our simulation results show that our proposed algorithms achieve good performance with reasonable complexity as compared with the minimum mean squared error (MMSE) and the maximum likelihood (ML) estimators.

  • Compressed Sampling and Source Localization of Miniature Microphone Array

    Qingyun WANG  Xinchun JI  Ruiyu LIANG  Li ZHAO  

     
    LETTER

      Vol:
    E97-A No:9
      Page(s):
    1902-1906

    In the traditional microphone array signal processing, the performance degrades rapidly when the array aperture decreases, which has been a barrier restricting its implementation in the small-scale acoustic system such as digital hearing aids. In this work a new compressed sampling method of miniature microphone array is proposed, which compresses information in the internal of ADC by means of mixture system of hardware circuit and software program in order to remove the redundancy of the different array element signals. The architecture of the method is developed using the Verilog language and has already been tested in the FPGA chip. Experiments of compressed sampling and reconstruction show the successful sparseness and reconstruction for speech sources. Owing to having avoided singularity problem of the correlation matrix of the miniature microphone array, when used in the direction of arrival (DOA) estimation in digital hearing aids, the proposed method has the advantage of higher resolution compared with the traditional GCC and MUSIC algorithms.

  • Quantizer Design Optimized for Distributed Estimation

    Yoon Hak KIM  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:6
      Page(s):
    1639-1643

    We consider the problem of optimizing the quantizer design for distributed estimation systems where all nodes located at different sites collect measurements and transmit quantized data to a fusion node, which then produces an estimate of the parameter of interest. For this problem, the goal is to minimize the amount of information that the nodes have to transmit in order to attain a certain application accuracy. We propose an iterative quantizer design algorithm that seeks to find a non-regular mapping between quantization partitions and their codewords so as to minimize global distortion such as the estimation error. We apply the proposed algorithm to a system where an acoustic amplitude sensor model is employed at each node for source localization. Our experiments demonstrate that a significant performance gain can be achieved by our technique as compared with standard typical designs and even with distributed novel designs recently published.

  • Full Azimuth Multiple Sound Source Localization with 3-Channel Microphone Array

    Suwon SHON  David K. HAN  Jounghoon BEH  Hanseok KO  

     
    PAPER-Engineering Acoustics

      Vol:
    E95-A No:4
      Page(s):
    745-750

    This paper describes a method for estimating Direction Of Arrival (DOA) of multiple sound sources in full azimuth with three microphones. Estimating DOA with paired microphone arrays creates imaginary sound sources because of time delay of arrival (TDOA) being identical between real and imaginary sources. Imaginary sound sources can create chronic problems in multiple Sound Source Localization (SSL), because they can be localized as real sound sources. Our proposed approach is based on the observation that each microphone array creates imaginary sound sources, but the DOA of imaginary sources may be different depending on the orientation of the paired microphone array. With the fact that a real source would always be localized in the same direction regardless of the array orientation, we can suppress the imaginary sound sources by minimum filtering based on Steered Response Power – Phase Transform (SRP-PHAT) method. A set of experiments conducted in a real noisy environment showed that the proposed method was accurate in localizing multiple sound sources.

  • Multiple Sound Source Localization Based on Inter-Channel Correlation Using a Distributed Microphone System in a Real Environment

    Kook CHO  Hajime OKUMURA  Takanobu NISHIURA  Yoichi YAMASHITA  

     
    PAPER-Microphone Array

      Vol:
    E93-D No:9
      Page(s):
    2463-2471

    In real environments, the presence of ambient noise and room reverberations seriously degrades the accuracy in sound source localization. In addition, conventional sound source localization methods cannot localize multiple sound sources accurately in real noisy environments. This paper proposes a new method of multiple sound source localization using a distributed microphone system that is a recording system with multiple microphones dispersed to a wide area. The proposed method localizes a sound source by finding the position that maximizes the accumulated correlation coefficient between multiple channel pairs. After the estimation of the first sound source, a typical pattern of the accumulated correlation for a single sound source is subtracted from the observed distribution of the accumulated correlation. Subsequently, the second sound source is searched again. To evaluate the effectiveness of the proposed method, experiments of two sound source localization were carried out in an office room. The result shows that sound source localization accuracy is about 99.7%. The proposed method could realize the multiple sound source localization robustly and stably.

  • Cramer-Rao Bound on Passive Source Localization for General Gaussian Noise

    Sha LI  Brian L.F. DAKU  

     
    PAPER-Engineering Acoustics

      Vol:
    E93-A No:5
      Page(s):
    914-925

    This paper focuses on the development of Cramer-Rao Bound (CRB) expressions for passive source location estimation in various Gaussian noise environments. The scenarios considered involve an unknown deterministic source signal with a short time duration, and additive general Gaussian noise. The mathematical derivation procedure presented is applicable to non-stationary Gaussian noise problems. Specifically, explicit closed-form CRB expressions are presented using the spectrum representation of the signal and noise for stationary Gaussian noise cases.

  • Azimuthal and Elevation Localization Using Inter-Channel Phase and Level Differences for a Hemispheric Object

    Yoshifumi CHISAKI  Toshimichi TAKADA  Masahiro NAGANISHI  Tsuyoshi USAGAWA  

     
    LETTER-Engineering Acoustics

      Vol:
    E91-A No:10
      Page(s):
    3059-3062

    The frequency domain binaural model (FDBM) has been previously proposed to localize multiple sound sources. Since the method requires only two input signals and uses interaural phase and level differences caused by the diffraction generated by the head, flexibility in application is very high when the head is considered as an object. When an object is symmetric with respect to the two microphones, the performance of sound source localization is degraded, as a human being has front-back confusion due to the symmetry in a median plane. This paper proposes to reduce the degradation of performance on sound source localization by a combination of the microphone pair outputs using the FDBM. The proposed method is evaluated by applying to a security camera system, and the results showed performance improvement in sound source localization because of reducing the number of cones of confusion.

  • A Robust Sound Source Localization Approach for Microphone Array with Model Errors

    Hua XIAO  Huai-Zong SHAO  Qi-Cong PENG  

     
    PAPER-Speech and Hearing

      Vol:
    E91-A No:8
      Page(s):
    2062-2067

    In this paper, a robust sound source localization approach is proposed. The approach retains good performance even when model errors exist. Compared with previous work in this field, the contributions of this paper are as follows. First, an improved broad-band and near-field array model is proposed. It takes array gain, phase perturbations into account and is based on the actual positions of the elements. It can be used in arbitrary planar geometry arrays. Second, a subspace model errors estimation algorithm and a Weighted 2-Dimension Multiple Signal Classification (W2D-MUSIC) algorithm are proposed. The subspace model errors estimation algorithm estimates unknown parameters of the array model, i.e., gain, phase perturbations, and positions of the elements, with high accuracy. The performance of this algorithm is improved with the increasing of SNR or number of snapshots. The W2D-MUSIC algorithm based on the improved array model is implemented to locate sound sources. These two algorithms compose the robust sound source approach. The more accurate steering vectors can be provided for further processing such as adaptive beamforming algorithm. Numerical examples confirm effectiveness of this proposed approach.

  • Accuracy of Two-Dipole Source Localization Using a Method Combining BP Neural Network with NLS Method from 32-Channel EEGs

    Zhuoming LI  Xiaoxiao BAI  Qinyu ZHANG  Masatake AKUTAGAWA  Fumio SHICHIJO  Yohsuke KINOUCHI  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:7
      Page(s):
    2234-2242

    The electroencephalogram (EEG) has become a widely used tool for investigating brain function. Brain signal source localization is a process of inverse calculation from sensor information (electric potentials for EEG) to the identification of multiple brain sources to obtain the locations and orientation parameters. In this paper, we describe a combination of the backpropagation neural network (BPNN) with the nonlinear least-square (NLS) method to localize two dipoles with reasonable accuracy and speed from EEG data computerized by two dipoles randomly positioned in the brain. The trained BPNN, obtains the initial values for the two dipoles through fast calculation and also avoids the influence of noise. Then the NLS method (Powell algorithm) is used to accurately estimate the two dipole parameters. In this study, we also obtain the minimum distance between the assumed dipole pair, 0.8 cm, in order to localize two sources from a smaller limited distance between the dipole pair. The present simulation results demonstrate that the combined method can allow us to localize two dipoles with high speed and accuracy, that is, in 20 seconds and with the position error of around 6.5%, and to reduce the influence of noise.

  • Near-Field Sound-Source Localization Based on a Signed Binary Code

    Miki SATO  Akihiko SUGIYAMA  Osamu HOSHUYAMA  Nobuyuki YAMASHITA  Yoshihiro FUJITA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2078-2086

    This paper proposes near-field sound-source localization based on crosscorrelation of a signed binary code. The signed binary code eliminates multibit signal processing for simpler implementation. Explicit formulae with near-field assumption are derived for a two microphone scenario and extended to a three microphone case with front-rear discrimination. Adaptive threshold for enabling and disabling source localization is developed for robustness in noisy environment. The proposed sound-source localization algorithm is implemented on a fixed-point DSP. Evaluation results in a robot scenario demonstrate that near-field assumption and front-rear discrimination provides almost 40% improvement in DOA estimation. A correct detection rate of 85% is obtained by a robot in a home environment.

  • Sound Source Localization Using a Profile Fitting Method with Sound Reflectors

    Osamu ICHIKAWA  Tetsuya TAKIGUCHI  Masafumi NISHIMURA  

     
    PAPER

      Vol:
    E87-D No:5
      Page(s):
    1138-1145

    In a two-microphone approach, interchannel differences in time (ICTD) and interchannel differences in sound level (ICLD) have generally been used for sound source localization. But those cues are not effective for vertical localization in the median plane (direct front). For that purpose, spectral cues based on features of head-related transfer functions (HRTF) have been investigated, but they are not robust enough against signal variations and environmental noise. In this paper, we use a "profile" as a cue while using a combination of reflectors specially designed for vertical localization. The observed sound is converted into a profile containing information about reflections as well as ICTD and ICLD data. The observed profile is decomposed into signal and noise by using template profiles associated with sound source locations. The template minimizing the residual of the decomposition gives the estimated sound source location. Experiments show this method can correctly provide a rough estimate of the vertical location even in a noisy environment.

  • Visualization of Brain Activities of Single-Trial and Averaged Multiple-Trials MEG Data

    Yoshio KONNO  Jianting CAO  Takayuki ARAI  Tsunehiro TAKEDA  

     
    PAPER-Neuro, Fuzzy, GA

      Vol:
    E86-A No:9
      Page(s):
    2294-2302

    Treating an averaged multiple-trials data or non-averaged single-trial data is a main approach in recent topics on applying independent component analysis (ICA) to neurobiological signal processing. By taking an average, the signal-to-noise ratio (SNR) is increased but some important information such as the strength of an evoked response and its dynamics will be lost. The single-trial data analysis, on the other hand, can avoid this problem but the SNR is very poor. In this study, we apply ICA to both non-averaged single-trial data and averaged multiple-trials data to determine the properties and advantages of both. Our results show that the analysis of averaged data is effective for seeking the response and dipole location of evoked fields. The non-averaged single-trial data analysis efficiently identifies the strength and dynamic component such as α-wave. For determining both the range of evoked strength and dipole location, an analysis of averaged limited-trials data is better option.

  • Accuracy of Single Dipole Source Localization by BP Neural Networks from 18-Channel EEGs

    Qinyu ZHANG  Hirofumi NAGASHINO  Yohsuke KINOUCHI  

     
    PAPER-Medical Engineering

      Vol:
    E86-D No:8
      Page(s):
    1447-1455

    A problem of estimating biopotential sources in the brain based on EEG signals observed on the scalp is known as an important inverse problem of electrophysiology. Usually there is no closed-form solution for this problem and it requires iterative techniques such as the Levenberg-Marquardt algorithm. Considering the nonlinear properties of inverse problem, and signal to noise ratio inherent in EEG signals, a back propagation neural network has been recently proposed as a solution. In this paper, we investigated the properties of neural networks and its localization accuracy for single dipole source localization. Based on the results of extensive studies, we concluded the neural networks are highly feasible in single-source localization with a small number of electrodes (18 electrodes), also examined the usefulness of this method for clinical application with a case of epilepsy.

1-20hit(21hit)