The search functionality is under construction.

Keyword Search Result

[Keyword] spectrum handoff(3hit)

1-3hit
  • Medium Access Control Design for Cognitive Radio Networks: A Survey

    Nhan NGUYEN-THANH  Anh T. PHAM  Van-Tam NGUYEN  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    359-374

    Designing a medium access control (MAC) protocol is a key for implementing any practical wireless network. In general, a MAC protocol is responsible for coordinating users in accessing spectrum resources. Given that a user in cognitive radio(CR) networks do not have priority in accessing spectrum resources, MAC protocols have to perform dynamic spectrum access (DSA) functions, including spectrum sensing, spectrum access, spectrum allocation, spectrum sharing and spectrum mobility, beside conventional control procedure. As a result, designing MAC protocols for CR networks requires more complicated consideration than that needed for conventional/primary wireless network. In this paper, we focus on two major perspectives related to the design of a CR-MAC protocol: dynamic spectrum access functions and network infrastructure. Five DSA functions are reviewed from the point of view of MAC protocol design. In addition, some important factors related to the infrastructure of a CR network including network architecture, control channel management, the number of radios in the CR device and the number of transmission data channels are also discussed. The remaining challenges and open research issues are addressed for future research to aim at obtaining practical CR-MAC protocols.

  • Handoff Delay-Based Call Admission Control in Cognitive Radio Networks

    Ling WANG  Qicong PENG  Qihang PENG  

     
    PAPER-Network

      Vol:
    E97-B No:1
      Page(s):
    49-55

    In this paper, we investigate how to achieve call admission control (CAC) for guaranteeing call dropping probability QoS which is caused by handoff timeout in cognitive radio (CR) networks. When primary user (PU) appears, spectrum handoff should be initiated to maintain secondary user (SU)'s link. We propose a novel virtual queuing (VQ) scheme to schedule spectrum handoff requests sent by multiple SUs. Unlike the conventional first-come-first-served (FCFS) scheduling, resuming transmission in the original channel has higher priority than switching to another channel. It costs less because it avoids the cost of signaling frequent spectrum switches. We characterize the handoff delay on the effect of PU's behavior and the number of SUs in CR networks. And user capacity under certain QoS requirement is derived as a guideline for CAC. The analytical results show that call dropping performance can be greatly improved by CAC when a large amount of SUs arrives fast as well as the VQ scheme is verified to reduce handoff cost compared to existing methods.

  • Spectrum Handoff for Cognitive Radio Systems Based on Prediction Considering Cross-Layer Optimization

    Xiaoyu QIAO  Zhenhui TAN  Bo AI  Jiaying SONG  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3274-3283

    The spectrum handoff problem for cognitive radio systems is considered in this paper. The secondary users (SUs) can only opportunistically access the spectrum holes, i.e. the frequency channels unoccupied by the primary users (PUs). As long as a PU appears, SUs have to vacate the channel to avoid interference to PUs and switch to another available channel. In this paper, a prediction-based spectrum handoff scheme is proposed to reduce the negative effect (both the interference to PUs and the service block of SUs) during the switching time. In the proposed scheme, a hidden Markov model is used to predict the occupancy of a frequency channel. By estimating the state of the model in the next time instant, we can predict whether the frequency channel will be occupied by PUs or not. As a cross-layer design, the spectrum sensing performance parameters false alarm probability and missing detection probability are taken into account to enhance accuracy of the channel occupancy prediction. The proposed scheme will react on the spectrum sensing algorithm parameters while the spectrum handoff performance is significantly affected by them. The interference to the PUs could be reduced obviously by adapting the proposed spectrum handoff scheme, associated with a potential increase of switch delay of SUs. It will also be helpful for SUs to save broadband scan time and prefer an appropriate objective channel so as to avoid service block. Numerical results demonstrate the above performance improvement by using this prediction-based scheme.