1-2hit |
Two operations, polynomial multiplication and modular reduction, are newly induced by the properties of the modified Booth's algorithm and irreducible all one polynomials, respectively. A new and effective methodology is hereby proposed for computing multiplication over a class of fields GF(2m) using the two operations. Then a low complexity multiplexer-based multiplier is presented based on the aforementioned methodology. Our multiplier consists of m 2-input AND gates, an (m2 + 3m - 4)/2 2-input XOR gates, and m(m - 1)/2 4 1 multiplexers. For the detailed estimation of the complexity of our multiplier, we will expand this argument into the transistor count, using a standard CMOS VLSI realization. The compared results show that our work is advantageous in terms of circuit complexity and requires less delay time compared to previously reported multipliers. Moreover, our architecture is very regular, modular and therefore, well-suited for VLSI implementation.
To design a high-speed m-bit parallel inversion circuit over GF(2m), we study two variations for the repetition-operation of the numerical formula, AB2, in employing square-first and multiply-first type operations. From the proposed two variations, we propose four inversion architectures, adopting the multiplier and square in [10], as follows: simple duplication semi-systolic architecture for multiply-first inversion circuit (MFIC), m-bit parallel semi-systolic architecture for MFIC, simple duplication semi-systolic architecture for square-first inversion circuit (SFIC), and simplified m-bit parallel semi-systolic architecture for SFIC. Among them, performance of the simplified m-bit parallel semi-systolic architecture for SFIC is recommended for a high-speed applications to get a maximum throughput in the sense of small hardware-complexity, and low latency. When we implement the simplified 8-bit parallel semi-systolic architecture for SFIC over GF(28) by using 0.25 µm CMOS library, necessary are 2495 logic-gates and 1848 latches, and the latency is 56 and the estimated clock-rate is 580 MHz at 100% throughput.