The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] stochastic A/D conversion(2hit)

1-2hit
  • A Multi-Channel Biomedical Sensor System with System-Level Chopping and Stochastic A/D Conversion Open Access

    Yusaku HIRAI  Toshimasa MATSUOKA  Takatsugu KAMATA  Sadahiro TANI  Takao ONOYE  

     
    PAPER-Circuit Theory

      Pubricized:
    2024/02/09
      Vol:
    E107-A No:8
      Page(s):
    1127-1138

    This paper presents a multi-channel biomedical sensor system with system-level chopping and stochastic analog-to-digital (A/D) conversion techniques. The system-level chopping technique extends the input-signal bandwidth and reduces the interchannel crosstalk caused by multiplexing. The system-level chopping can replace an analog low-pass filter (LPF) with a digital filter and can reduce its area occupation. The stochastic A/D conversion technique realizes power-efficient resolution enhancement. A novel auto-calibration technique is also proposed for the stochastic A/D conversion technique. The proposed system includes a prototype analog front-end (AFE) IC fabricated using a 130 nm CMOS process. The fabricated AFE IC improved its interchannel crosstalk by 40 dB compared with the conventional analog chopping architecture. The AFE IC achieved SNDR of 62.9 dB at a sampling rate of 31.25 kSps while consuming 9.6 μW from a 1.2 V power supply. The proposed resolution enhancement technique improved the measured SNDR by 4.5 dB.

  • Behavior-Level Analysis of a Successive Stochastic Approximation Analog-to-Digital Conversion System for Multi-Channel Biomedical Data Acquisition

    Sadahiro TANI  Toshimasa MATSUOKA  Yusaku HIRAI  Toshifumi KURATA  Keiji TATSUMI  Tomohiro ASANO  Masayuki UEDA  Takatsugu KAMATA  

     
    PAPER-Analog Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2073-2085

    In the present paper, we propose a novel high-resolution analog-to-digital converter (ADC) for low-power biomedical analog front-ends, which we call the successive stochastic approximation ADC. The proposed ADC uses a stochastic flash ADC (SF-ADC) to realize a digitally controlled variable-threshold comparator in a successive-approximation-register ADC (SAR-ADC), which can correct errors originating from the internal digital-to-analog converter in the SAR-ADC. For the residual error after SAR-ADC operation, which can be smaller than thermal noise, the SF-ADC uses the statistical characteristics of noise to achieve high resolution. The SF-ADC output for the residual signal is combined with the SAR-ADC output to obtain high-precision output data using the supervised machine learning method.