1-13hit |
Masayuki ODAGAWA Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
This paper presents examination result of possibility for automatic unclear region detection in the CAD system for colorectal tumor with real time endoscopic video image. We confirmed that it is possible to realize the CAD system with navigation function of clear region which consists of unclear region detection by YOLO2 and classification by AlexNet and SVMs on customizable embedded DSP cores. Moreover, we confirmed the real time CAD system can be constructed by a low power ASIC using customizable embedded DSP cores.
Masayuki ODAGAWA Takumi OKAMOTO Tetsushi KOIDE Toru TAMAKI Shigeto YOSHIDA Hiroshi MIENO Shinji TANAKA
In this paper, we present a classification method for a Computer-Aided Diagnosis (CAD) system in a colorectal magnified Narrow Band Imaging (NBI) endoscopy. In an endoscopic video image, color shift, blurring or reflection of light occurs in a lesion area, which affects the discrimination result by a computer. Therefore, in order to identify lesions with high robustness and stable classification to these images specific to video frame, we implement a CAD system for colorectal endoscopic images with the Convolutional Neural Network (CNN) feature and Support Vector Machine (SVM) classification on the embedded DSP core. To improve the robustness of CAD system, we construct the SVM learned by multiple image sizes data sets so as to adapt to the noise peculiar to the video image. We confirmed that the proposed method achieves higher robustness, stable, and high classification accuracy in the endoscopic video image. The proposed method also can cope with differences in resolution by old and new endoscopes and perform stably with respect to the input endoscopic video image.
Hatoon S. ALSAGRI Mourad YKHLEF
Social media channels, such as Facebook, Twitter, and Instagram, have altered our world forever. People are now increasingly connected than ever and reveal a sort of digital persona. Although social media certainly has several remarkable features, the demerits are undeniable as well. Recent studies have indicated a correlation between high usage of social media sites and increased depression. The present study aims to exploit machine learning techniques for detecting a probable depressed Twitter user based on both, his/her network behavior and tweets. For this purpose, we trained and tested classifiers to distinguish whether a user is depressed or not using features extracted from his/her activities in the network and tweets. The results showed that the more features are used, the higher are the accuracy and F-measure scores in detecting depressed users. This method is a data-driven, predictive approach for early detection of depression or other mental illnesses. This study's main contribution is the exploration part of the features and its impact on detecting the depression level.
Haoran LI Binyu WANG Jisheng DAI Tianhong PAN
Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.
Tracking-by-detection methods consider tracking task as a continuous detection problem applied over video frames. Modern tracking-by-detection trackers have online learning ability; the update stage is essential because it determines how to modify the classifier inherent in a tracker. However, most trackers search for the target within a fixed region centered at the previous object position; thus, they lack spatiotemporal consistency. This becomes a problem when the tracker detects an incorrect object during short-term occlusion. In addition, the scale of the bounding box that contains the target object is usually assumed not to change. This assumption is unrealistic for long-term tracking, where the scale of the target varies as the distance between the target and the camera changes. The accumulation of errors resulting from these shortcomings results in the drift problem, i.e. drifting away from the target object. To resolve this problem, we present a drift-free, online learning-based tracking-by-detection method using a single static camera. We improve the latent structured support vector machine (SVM) tracker by designing a more robust tracker update step by incorporating two Kalman filter modules: the first is used to predict an adaptive search region in consideration of the object motion; the second is used to adjust the scale of the bounding box by accounting for the background model. We propose a hierarchical search strategy that combines Bhattacharyya coefficient similarity analysis and Kalman predictors. This strategy facilitates overcoming occlusion and increases tracking efficiency. We evaluate this work using publicly available videos thoroughly. Experimental results show that the proposed method outperforms the state-of-the-art trackers.
Rachelle RIVERO Richard LEMENCE Tsuyoshi KATO
With the huge influx of various data nowadays, extracting knowledge from them has become an interesting but tedious task among data scientists, particularly when the data come in heterogeneous form and have missing information. Many data completion techniques had been introduced, especially in the advent of kernel methods — a way in which one can represent heterogeneous data sets into a single form: as kernel matrices. However, among the many data completion techniques available in the literature, studies about mutually completing several incomplete kernel matrices have not been given much attention yet. In this paper, we present a new method, called Mutual Kernel Matrix Completion (MKMC) algorithm, that tackles this problem of mutually inferring the missing entries of multiple kernel matrices by combining the notions of data fusion and kernel matrix completion, applied on biological data sets to be used for classification task. We first introduced an objective function that will be minimized by exploiting the EM algorithm, which in turn results to an estimate of the missing entries of the kernel matrices involved. The completed kernel matrices are then combined to produce a model matrix that can be used to further improve the obtained estimates. An interesting result of our study is that the E-step and the M-step are given in closed form, which makes our algorithm efficient in terms of time and memory. After completion, the (completed) kernel matrices are then used to train an SVM classifier to test how well the relationships among the entries are preserved. Our empirical results show that the proposed algorithm bested the traditional completion techniques in preserving the relationships among the data points, and in accurately recovering the missing kernel matrix entries. By far, MKMC offers a promising solution to the problem of mutual estimation of a number of relevant incomplete kernel matrices.
Norifumi KAWABATA Masaru MIYAO
Previously, it is not obvious to what extent was accepted for the assessors when we see the 3D image (including multi-view 3D) which the luminance change may affect the stereoscopic effect and assessment generally. We think that we can conduct a general evaluation, along with a subjective evaluation, of the luminance component using both the S-CIELAB color space and CIEDE2000. In this study, first, we performed three types of subjective evaluation experiments for contrast enhancement in an image by using the eight viewpoints parallax barrier method. Next, we analyzed the results statistically by using a support vector machine (SVM). Further, we objectively evaluated the luminance value measurement by using CIEDE2000 in the S-CIELAB color space. Then, we checked whether the objective evaluation value was related to the subjective evaluation value. From results, we were able to see the characteristic relationship between subjective assessment and objective assessment.
Kento HASEGAWA Masao YANAGISAWA Nozomu TOGAWA
Due to the increase of outsourcing by IC vendors, we face a serious risk that malicious third-party vendors insert hardware Trojans very easily into their IC products. However, detecting hardware Trojans is very difficult because today's ICs are huge and complex. In this paper, we propose a hardware-Trojan classification method for gate-level netlists to identify hardware-Trojan infected nets (or Trojan nets) using a support vector machine (SVM) or a neural network (NN). At first, we extract the five hardware-Trojan features from each net in a netlist. These feature values are complicated so that we cannot give the simple and fixed threshold values to them. Hence we secondly represent them to be a five-dimensional vector and learn them by using SVM or NN. Finally, we can successfully classify all the nets in an unknown netlist into Trojan ones and normal ones based on the learned classifiers. We have applied our machine-learning-based hardware-Trojan classification method to Trust-HUB benchmarks. The results demonstrate that our method increases the true positive rate compared to the existing state-of-the-art results in most of the cases. In some cases, our method can achieve the true positive rate of 100%, which shows that all the Trojan nets in an unknown netlist are completely detected by our method.
Norifumi KAWABATA Masaru MIYAO
Many previous studies on image quality assessment of 3D still images or video clips have been conducted. In particular, it is important to know the region in which assessors are interested or on which they focus in images or video clips, as represented by the ROI (Region of Interest). For multi-view 3D images, it is obvious that there are a number of viewpoints; however, it is not clear whether assessors focus on objects or background regions. It is also not clear on what assessors focus depending on whether the background region is colored or gray scale. Furthermore, while case studies on coded degradation in 2D or binocular stereoscopic videos have been conducted, no such case studies on multi-view 3D videos exist, and therefore, no results are available for coded degradation according to the object or background region in multi-view 3D images. In addition, in the case where the background region is gray scale or not, it was not revealed that there were affection for gaze point environment of assessors and subjective image quality. In this study, we conducted experiments on the subjective evaluation of the assessor in the case of coded degradation by JPEG coding of the background or object or both in 3D CG images using an eight viewpoint parallax barrier method. Then, we analyzed the results statistically and classified the evaluation scores using an SVM.
Kenshi SAHO Hiroaki HOMMA Takuya SAKAMOTO Toru SATO Kenichi INOUE Takeshi FUKUDA
Recent studies have focused on developing security systems using micro-Doppler radars to detect human bodies. However, the resolution of these conventional methods is unsuitable for identifying bodies and moreover, most of these conventional methods were designed for a solitary or sufficiently well-spaced targets. This paper proposes a solution to these problems with an image separation method for two closely spaced pedestrian targets. The proposed method first develops an image of the targets using ultra-wide-band (UWB) Doppler imaging radar. Next, the targets in the image are separated using a supervised learning-based separation method trained on a data set extracted using a range profile. We experimentally evaluated the performance of the image separation using some representative supervised separation methods and selected the most appropriate method. Finally, we reject false points caused by target interference based on the separation result. The experiment, assuming two pedestrians with a body separation of 0.44m, shows that our method accurately separates their images using a UWB Doppler radar with a nominal down-range resolution of 0.3m. We describe applications using various target positions, establish the performance, and derive optimal settings for our method.
Mitsuru SHIOZAKI Kousuke OGAWA Kota FURUHASHI Takahiko MURAYAMA Masaya YOSHIKAWA Takeshi FUJINO
In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.
Guangyi ZHOU Yi CUI Yumeng LIU Jian YANG
In this letter, a new terrain type classifier is proposed for polarimetric Synthetic Aperture Radar (Pol-SAR) images. This classifier uses the binary tree structure. The homogenous and inhomogeneous areas are first classified by the support vector machine (SVM) classifier based on the texture features extracted from the span image. Then the homogenous and inhomogeneous areas are, respectively, classified by the traditional Wishart classifier and the SVM classifier based on the texture features. Using a NASA/JPL AIRSAR image, the authors achieve the classification accuracy of up to 98%, demonstrating the effectiveness of the proposed method.
Takeshi MASUYAMA Hiroshi NAKAGAWA
Although many researchers have verified the superiority of Support Vector Machine (SVM) on text categorization tasks, some recent papers have reported much lower performance of SVM based text categorization methods when focusing on all types of parts of speech (POS) as input words and treating large numbers of training documents. This was caused by the overfitting problem that SVM sometimes selected unsuitable support vectors for each category in the training set. To avoid the overfitting problem, we propose a two step text categorization method with a variable cascaded feature selection (VCFS) using SVM. VCFS method selects a pair of the best number of words and the best POS combination for each category at each step of the cascade. We made use of the difference of words with the highest mutual information for each category on each POS combination. Through the experiments, we confirmed the validation of VCFS method compared with other SVM based text categorization methods, since our results showed that the macro-averaged F1 measure (64.8%) of VCFS method was significantly better than any reported F1 measures, though the micro-averaged F1 measure (85.4%) of VCFS method was similar to them.