The search functionality is under construction.

Keyword Search Result

[Keyword] symbol error rate(15hit)

1-15hit
  • Power Allocation for Zero-Forcing Strategy in Two-User X Channel

    Xianglan JIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1916-1922

    In an X channel, multiple transmitters transmit independent signals to different receivers. Separate zero-forcing (ZF) precoding is used at transmitters in the two-user X channel with two transmitters and two receivers. A closed-form optimal power allocation is derived under the sum power constraint (SPC) to maximize the squared minimum distance. The ZF strategy with optimal power allocation achieves a significant signal to noise ratio (SNR) improvement. Under the individual power constraint (IPC), a suboptimal power allocation that achieves better performance compared to the existing algorithms is also proposed.

  • Opportunistic Relaying Analysis Using Antenna Selection under Adaptive Transmission

    Ramesh KUMAR  Abdul AZIZ  Inwhee JOE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/06/16
      Vol:
    E99-B No:11
      Page(s):
    2435-2441

    In this paper, we propose and analyze the opportunistic amplify-and-forward (AF) relaying scheme using antenna selection in conjunction with different adaptive transmission techniques over Rayleigh fading channels. In this scheme, the best antenna of a source and the best relay are selected for communication between the source and destination. Closed-form expressions for the outage probability and average symbol error rate (SER) are derived to confirm that increasing the number of antennas is the best option as compared with increasing the number of relays. We also obtain closed-form expressions for the average channel capacity under three different adaptive transmission techniques: 1) optimal power and rate adaptation; 2) constant power with optimal rate adaptation; and 3) channel inversion with a fixed rate. The channel capacity performance of the considered adaptive transmission techniques is evaluated and compared with a different number of relays and various antennas configurations for each adaptive technique. Our derived analytical results are verified through extensive Monte Carlo simulations.

  • Geographic Cooperative Routing for Minimum Symbol Error Rate in Wireless Multihop Networks

    Yu TIAN  Linhua MA  Bo SONG  Hong TANG  Song ZHANG  Xing HU  

     
    PAPER-Network

      Vol:
    E97-B No:2
      Page(s):
    441-449

    Much work in cooperative communication has been done from the perspective of the physical and network layers. However, the exact impact of signal error rate performance on cooperative routing discovery still remains unclear in multihop ad hoc networks. In this paper, we show the symbol error rate (SER) performance improvement obtained from cooperative commutation, and examine how to incorporate the factor of SER into the distributed routing discovery scheme called DGCR (Dynamic Geographic Cooperative Routing). For a single cooperative communication hop, we present two types of metric to specify the degree that one node is suitable for becoming the relay node. One metric is the potential of a node to relay with optimal SER performance. The other metric is the distance of a node to the straight line that passes through the last forwarding node and the destination. Based on location knowledge and contention scheme, we combine the two metrics into a composite metric to choose the relay node. The forwarding node is chosen dynamically according to the positions of the actual relay node and the destination. Simulation results show that our approach outperforms non-cooperative geographic routing significantly in terms of symbol error rate, and that DGCR's SER performance is better than traditional geographic cooperative routing with slight path length increase.

  • Power Allocation and Performance Analysis for Incremental-Selective Decode-and-Forward Cooperative Communications over Nakagami-m Fading Channels

    Rouhollah AGHAJANI  Reza SAADAT  Mohammad Reza AREF  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1531-1539

    The focus of this study is the performance of the relaying network with incremental selective decode-and-forward (ISDF) protocol in non-selective slow Nakagami-m fading channels. To enhance bandwidth efficiency, when the direct transmission is not successful the relay is used to retransmit a clean copy of the source signal. The proposed protocol achieves a significant reduction in the power consumption and an improvement in performance compared to the fixed decode-and-forward (DF). The exact symbol error rate (SER) of M-PSK modulation for the ISDF protocol over general fading channels is derived. However, as the exact SER analysis is very complicated, we provide an approximated SER expression. Based on this approximation, we provide an optimum power allocation coefficient where the aggregate transmit power constraint is imposed on the source and the relay. Our results show that at least 50% of total power must be used by the direct link, and the remaining may be used by the relay. Furthermore, power allocation in this protocol is independent of the quality of the source-destination channel and modulation constellation size. Numerical results show that the ISDF protocol can reduce the average transmit power with respect to the fixed DF protocol.

  • Asymptotic Performance Analysis of STBCs from Coordinate Interleaved Orthogonal Designs in Shadowed Rayleigh Fading Channels

    Chanho YOON  Hoojin LEE  Joonhyuk KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:7
      Page(s):
    2501-2504

    In this letter, we provide an asymptotic error rate performance evaluation of space-time block codes from coordinate interleaved orthogonal designs (STBCs-CIODs), especially in shadowed Rayleigh fading channels. By evaluating a simplified probability density function (PDF) of Rayleigh and Rayleigh-lognormal channels affecting the STBC-CIOD system, we derive an accurate closed-form approximation for the tight upper and lower bounds on the symbol error rate (SER). We show that shadowing asymptotically affects coding gain only, and conclude that an increase in diversity order under shadowing causes slower convergence to asymptotic bound due to the relatively larger loss of coding gain. By comparing the derived formulas and Monte-Carlo simulations, we validate the accuracy of the theoretical results.

  • Performance Analysis of Opportunistic and All-Participate Relaying with Imperfect Channel Estimation

    Lei WANG  Yueming CAI  Weiwei YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3151-3154

    For amplify-and-forward (AF) relaying with imperfect channel estimation, we present the average symbol error rate (SER) and the diversity and multiplexing tradeoff (DMT) analysis for both opportunistic relaying (OPR) and all-participate relaying (APR) schemes. SER comparisons show that when the channel estimation quality order is no larger than 1, OPR will perform worse than APR in high SNR region. Moreover, small channel estimation quality orders will also lead to significant DMT loss.

  • Performance Analysis for the Amplify-and-Forward Two-Way Cooperative Relaying Networks

    Ha Nguyen VU  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2663-2666

    In this letter, we analyze the amplify-and-forward (AF) two-way cooperative relaying scheme with regard to the average data transmission rate and the symbol error probability. By investigating the Moment-Generating function (MGF) and the k-th moment of “extra-harmonic” mean of two variables, we derive an exact closed-form expression for the symbol error probability (SEP) and the approximate average sum rate. Analysis results show that the proposed scheme achieves higher SEP performance as well as a lower data rate than the conventional AF two-way scheme. Additionally, it also matches the SEP performance of the one-way AF cooperative scheme but attains higher sum rate. Finally, Monte Carlo simulation results will be shown to confirm our analytical results.

  • Concise Performance Analysis of Maximal Ratio Combining with Transmit Antenna Selection in Nakagami-m Fading Channels

    Ching-Tai CHIANG  Chia-Chun HUNG  Nan-Yang YEN  Rong-Ching WU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    595-598

    This letter presents structurally simpler symbol error rate (SER) expressions for Transmit Antenna Selection/Maximal-Ratio Combining (TAS/MRC) scheme in independent Nakagami-m fading channels in a comparison with those in the literature. First, the SER is derived as a single infinite series of simple functions for arbitrary m. For integer m, the SER can be attained as a closed-form expression with a double finite series. Moreover, simple asymptotic SER expressions suggest that the TAS/MRC scheme can achieve a full diversity order at high SNR. Numerical and simulation results verify the conciseness of the derived expressions.

  • Impact of Channel Estimation Errors in Cooperative Transmission over Nakagami-m Fading Channels

    Lei WANG  Yueming CAI  Weiwei YANG  

     
    PAPER-Information Network

      Vol:
    E94-D No:2
      Page(s):
    298-307

    In this paper, we analyze the impact of channel estimation errors for both decode-and-forward (DF) and amplify-and-forward (AF) cooperative communication systems over Nakagami-m fading channels. Firstly, we derive the exact one-integral and the approximate expressions of the symbol error rate (SER) for DF and AF relay systems with different modulations. We also present expressions showing the limitations of SER under channel estimation errors. Secondly, in order to quantify the impact of channel estimation errors, the average signal-to-noise-ratio (SNR) gap ratio is investigated for the two types of cooperative communication systems. Numerical results confirm that our theoretical analysis for SER is very efficient and accurate. Comparison of the average SNR gap ratio shows that DF model is less susceptible to channel estimation errors than AF model.

  • Opportunistic Cooperative Communications over Nakagami-m Fading Channels

    Runping YUAN  Taiyi ZHANG  Jing ZHANG  Jianxiong HUANG  Zhenjie FENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2812-2816

    In this letter, a dual-hop wireless communication network with opportunistic amplify and forward (O-AF) relay is investigated over independent and non-identically distributed Nakagami-m fading channels. Employing Maclaurin series expansion around zero to derive the approximate probability density function of the normalized instantaneous signal-to-noise ratio (SNR), the asymptotic symbol error rate (SER) and outage probability expressions are presented. Simulation results indicate that the derived expressions well match the results of Monte-Carlo simulations at medium and high SNR regions. By comparing the O-AF with all AF relaying analyzed previously, it can be concluded that the former has significantly better performance than the latter in many cases.

  • A Simple Approximation for the Symbol Error Rate of Triangular Quadrature Amplitude Modulation

    Tran Trung DUY  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:3
      Page(s):
    753-756

    In this paper, we consider the error performance of the regular triangular quadrature amplitude modulation (TQAM). In particular, using an accurate exponential bound of the complementary error function, we derive a simple approximation for the average symbol error rate (SER) of TQAM over Additive White Gaussian Noise (AWGN) and fading channels. The accuracy of our approach is verified by some simulation results.

  • On the Performance of Two-Way Amplify-and-Forward Relay Networks

    Trung Quang DUONG  Le-Nam HOANG  Vo Nguyen Quoc BAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3957-3959

    The performance of two-way amplify-and-forward (AF) relay networks is presented. In particular, we derive exact closed-form expressions for symbol error rate (SER), average sum-rate, and outage probability of two-way AF relay systems in independent but not identically distributed (i.n.i.d.) Rayleigh fading channels. Our analysis is validated by a comparison against the results of Monte-Carlo simulations.

  • Symbol Error Rate Expression for Decode-and-Forward Relaying Using Generalized Selection Combining over Rayleigh Fading Channels

    Bao Quoc VO-NGUYEN  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:4
      Page(s):
    1369-1372

    Cooperative transmission is an efficient approach to improve the performance of wireless communications over fading channels without the need for physical co-located antenna arrays. In this paper, we propose a novel cooperative protocol with selective decode-and-forward relays and generalized selection combining (GSC) technique at destination. The advantage of this scheme is that it not only allows us to optimize the structure of destination but also to fully exploit the diversity offered by the channels with an appropriate number of chosen strongest paths. For an arbitrary number of relays, an exact and closed-form expression of the Symbol Error Rate (SER) is derived for M-ary PSK in independent but not identically distributed Rayleigh fading channels. Various simulations are performed and their results exactly match the results of analyses.

  • Outage Performance and Average Symbol Error Rate of M-QAM for Maximum Ratio Combining with Multiple Interferers

    Kyung Seung AHN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E91-A No:8
      Page(s):
    2205-2212

    In this paper, we investigate the performance of maximum ratio combining (MRC) in the presence of multiple cochannel interferences over a flat Rayleigh fading channel. Closed-form expressions of signal-to-interference-plus-noise ratio (SINR), outage probability, and average symbol error rate (SER) of quadrature amplitude modulation (QAM) with M-ary signaling are obtained for unequal-power interference-to-noise ratio (INR). We also provide an upper-bound for the average SER using moment generating function (MGF) of the SINR. Moreover, we quantify the array gain loss between pure MRC (MRC system in the absence of CCI) and MRC system in the presence of CCI. Finally, we verify our analytical results by numerical simulations.

  • Error Rate Analysis of Coherent and Differential Multiphase Parallel Combinatorial Spread Spectrum Systems

    Shigenobu SASAKI  Hisakazu KIKUCHI  Jinkang ZHU  Gen MARUBAYASHI  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1196-1203

    This paper investigates the error rate performance of parallel combinatorial spread spectrum (PC/SS) communicaion systems that use coherent and differential multiphase modulation: multiphase parallel combinatorial spread spectrum (MPC/SS) communication systems. The PC/SS systems are multicode SS systems based on orthogonal pseudo-noise (PN) sequences. Data is transmitted by delivering a combination of multiple PN sequences among a set of pre-assigned PN sequences. In the MPC/SS systems, every PN sequence on transmission is modulated by q-ary coherent or differential phase shift keying (PSK). Symbol error rate (SER) and average bit error rate (BER) in coherent and differential MPC/SS systems are investigated. The BER comparison between the MPC/SS systems and simple multicode SS systems with q-ary coherent and differential PSK is also presented. Numerical results show that the MPC/SS systems are superior to the conventional q-ary PSK systems, if they have equal spectral efficiency.