The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] texture classification(8hit)

1-8hit
  • RBM-LBP: Joint Distribution of Multiple Local Binary Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/19
      Vol:
    E99-D No:11
      Page(s):
    2828-2831

    In this letter, we propose a novel framework to estimate the joint distribution of multiple Local Binary Patterns (LBPs). Multiple LBPs extracted from the same central pixel are first encoded using handcrafted encoding schemes to achieve rotation invariance, and the outputs are further encoded through a pre-trained Restricted Boltzmann Machine (RBM) to reduce the dimension of features. RBM has been successfully used as binary feature detectors and the binary-valued units of RBM seamlessly adapt to LBP. The proposed feature is called RBM-LBP. Experiments on the CUReT and Outex databases show that RBM-LBP is superior to conventional handcrafted encodings and more powerful in estimating the joint distribution of multiple LBPs.

  • Reflection and Rotation Invariant Uniform Patterns for Texture Classification

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/05
      Vol:
    E99-D No:5
      Page(s):
    1400-1403

    In this letter, we propose a novel texture descriptor that takes advantage of an anisotropic neighborhood. A brand new encoding scheme called Reflection and Rotation Invariant Uniform Patterns (rriu2) is proposed to explore local structures of textures. The proposed descriptor is called Oriented Local Binary Patterns (OLBP). OLBP may be incorporated into other varieties of Local Binary Patterns (LBP) to obtain more powerful texture descriptors. Experimental results on CUReT and Outex databases show that OLBP not only significantly outperforms LBP, but also demonstrates great robustness to rotation and illuminant changes.

  • Roughness Classification with Aggregated Discrete Fourier Transform

    Chao LIANG  Wenming YANG  Fei ZHOU  Qingmin LIAO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:10
      Page(s):
    2769-2779

    In this paper, we propose a texture descriptor based on amplitude distribution and phase distribution of the discrete Fourier transform (DFT) of an image. One dimensional DFT is applied to all the rows and columns of an image. Histograms of the amplitudes and gradients of the phases between adjacent rows/columns are computed as the feature descriptor, which is called aggregated DFT (ADFT). ADFT can be easily combined with completed local binary pattern (CLBP). The combined feature captures both global and local information of the texture. ADFT is designed for isotropic textures and demonstrated to be effective for roughness classification of castings. Experimental results show that the amplitude part of ADFT is also discriminative in describing anisotropic textures and it can be used as a complementary descriptor of local texture descriptors such as CLBP.

  • Texture Representation via Joint Statistics of Local Quantized Patterns

    Tiecheng SONG  Linfeng XU  Chao HUANG  Bing LUO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:1
      Page(s):
    155-159

    In this paper, a simple yet efficient texture representation is proposed for texture classification by exploring the joint statistics of local quantized patterns (jsLQP). In order to combine information of different domains, the Gaussian derivative filters are first employed to obtain the multi-scale gradient responses. Then, three feature maps are generated by encoding the local quantized binary and ternary patterns in the image space and the gradient space. Finally, these feature maps are hybridly encoded, and their joint histogram is used as the final texture representation. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art LBP based and even learning based methods for texture classification.

  • Texture Classification Using Hierarchical Linear Discriminant Space

    Yousun KANG  Ken'ichi MOROOKA  Hiroshi NAGAHASHI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E88-D No:10
      Page(s):
    2380-2388

    As a representative of the linear discriminant analysis, the Fisher method is most widely used in practice and it is very effective in two-class classification. However, when it is expanded to a multi-class classification problem, the precision of its discrimination may become worse. A main reason is an occurrence of overlapped distributions on the discriminant space built by Fisher criterion. In order to take such overlaps among classes into consideration, our approach builds a new discriminant space by hierarchically classifying the overlapped classes. In this paper, we propose a new hierarchical discriminant analysis for texture classification. We divide the discriminant space into subspaces by recursively grouping the overlapped classes. In the experiment, texture images from many classes are classified based on the proposed method. We show the outstanding result compared with the conventional Fisher method.

  • Metaheuristic Optimization Algorithms for Texture Classification Using Multichannel Approaches

    Jing-Wein WANG  

     
    PAPER-Image

      Vol:
    E87-A No:7
      Page(s):
    1810-1821

    This paper proposes the use of the ratio of wavelet extrema numbers taken from the horizontal and vertical counts respectively as a texture feature, which is called aspect ratio of extrema number (AREN). We formulate the classification problem upon natural and synthesized texture images as an optimization problem and develop a coevolving approach to select both scalar wavelet and multiwavelet feature spaces of greater discriminatory power. Sequential searches and genetic algorithms (GAs) are comparatively investigated. The experiments using wavelet packet decompositions with the innovative packet-tree selection scheme ascertain that the classification accuracy of coevolutionary genetic algorithms (CGAs) is acceptable enough.

  • Genetic Feature Selection for Texture Classification Using 2-D Non-Separable Wavelet Bases

    Jing-Wein WANG  Chin-Hsing CHEN  Jeng-Shyang PAN  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1635-1644

    In this paper, the performances of texture classification based on pyramidal and uniform decomposition are comparatively studied with and without feature selection. This comparison using the subband variance as feature explores the dependence among features. It is shown that the main problem when employing 2-D non-separable wavelet transforms for texture classification is the determination of the suitable features that yields the best classification results. A Max-Max algorithm which is a novel evaluation function based on genetic algorithms is presented to evaluate the classification performance of each subset of selected features. It is shown that the performance with feature selection in which only about half of features are selected is comparable to that without feature selection. Moreover, the discriminatory characteristics of texture spread more in low-pass bands and the features extracted from the pyramidal decomposition are more representative than those from the uniform decomposition. Experimental results have verified the selectivity of the proposed approach and its texture capturing characteristics.

  • Classification of Rotated and Scaled Textured Images Using Invariants Based on Spectral Moments

    Yasuo YOSHIDA  Yue WU  

     
    PAPER

      Vol:
    E81-A No:8
      Page(s):
    1661-1666

    This paper describes a classification method for rotated and scaled textured images using invariant parameters based on spectral-moments. Although it is well known that rotation invariants can be derived from moments of grey-level images, the use is limited to binary images because of its computational unstableness. In order to overcome this drawback, we use power spectrum instead of the grey levels to compute moments and adjust the integral region of moment evaluation to the change of scale. Rotation and scale invariants are obtained as the ratios of the different rotation invariants on the basis of a spectral-moment property with respect to scale. The effectiveness of the approach is illustrated through experiments on natural textures from the Brodatz album. In addition, the stability of the invariants with respect to the change of scale is discussed theoretically and confirmed experimentally.