The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] three-dimensional structure(2hit)

1-2hit
  • Growth Mechanism of Polar-Plane-Free Faceted InGaN Quantum Wells Open Access

    Yoshinobu MATSUDA  Mitsuru FUNATO  Yoichi KAWAKAMI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    532-536

    The growth mechanisms of three-dimensionally (3D) faceted InGaN quantum wells (QWs) on (=1=12=2) GaN substrates are discussed. The structure is composed of (=1=12=2), {=110=1}, and {=1100} planes, and the cross sectional shape is similar to that of 3D QWs on (0001). However, the 3D QWs on (=1=12=2) and (0001) show quite different inter-facet variation of In compositions. To clarify this observation, the local thicknesses of constituent InN and GaN on the 3D GaN are fitted with a formula derived from the diffusion equation. It is suggested that the difference in the In incorporation efficiency of each crystallographic plane strongly affects the surface In adatom migration.

  • Development of Array Detectors with Three-Dimensional Structure toward 1000 Pixels of Superconducting Tunnel Junctions

    Go FUJII  Masahiro UKIBE  Shigetomo SHIKI  Masataka OHKUBO  

     
    BRIEF PAPER

      Vol:
    E98-C No:3
      Page(s):
    192-195

    Superconducting tunnel junction (STJ) array detectors can exhibit excellent performance with respect to energy resolution, detection efficiency, and counting rate in the soft X-ray energy range, by which those excellent properties STJ array detectors are well suited for detecting X-rays at synchrotron radiation facilities. However, in order to achieve a high throughput analysis for trace impurity elements such as dopants in structural or functional materials, the sensitive area of STJ array detectors should be further enlarged up to more than 10 times larger by increasing the pixel number in array detectors. In this work, for a large STJ-pixel number of up to 1000 within a 10,mm- square compact chip, we have introduced three-dimensional (3D) structure by embedding a wiring layer in a SiO$_{2}$ isolation layer underneath a base electrode layer of STJs. The 3D structure is necessary for close-packed STJ arrangement, avoiding overlay of lead wiring, which is common in conventional two-dimensional layout. The fabricated STJ showed excellent current-voltage characteristics having low subgap currents less than 2,nA, which are the same as those of conventional STJs. An STJ pixel has an energy resolution of 31,eV (FWHM) for C-K$alpha $ (277,eV).