The search functionality is under construction.

Keyword Search Result

[Keyword] traffic classification(5hit)

1-5hit
  • HTTP Traffic Classification Based on Hierarchical Signature Structure

    Sung-Ho YOON  Jun-Sang PARK  Ji-Hyeok CHOI  Youngjoon WON  Myung-Sup KIM  

     
    LETTER-Information Network

      Pubricized:
    2015/08/19
      Vol:
    E98-D No:11
      Page(s):
    1994-1997

    Considering diversified HTTP types, the performance bottleneck of signature-based classification must be resolved. We define a signature model classifying the traffic in multiple dimensions and suggest a hierarchical signature structure to remove signature redundancy and minimize search space. Our experiments on campus traffic demonstrated 1.8 times faster processing speed than the Aho-Corasick matching algorithm in Snort.

  • A Lightweight Software Model for Signature-Based Application-Level Traffic Classification System

    Jun-Sang PARK  Sung-Ho YOON  Youngjoon WON  Myung-Sup KIM  

     
    PAPER-Information Network

      Vol:
    E97-D No:10
      Page(s):
    2697-2705

    Internet traffic classification is an essential step for stable service provision. The payload signature classifier is considered a reliable method for Internet traffic classification but is prohibitively computationally expensive for real-time handling of large amounts of traffic on high-speed networks. In this paper, we describe several design techniques to minimize the search space of traffic classification and improve the processing speed of the payload signature classifier. Our suggestions are (1) selective matching algorithms based on signature type, (2) signature reorganization using hierarchical structure and traffic locality, and (3) early packet sampling in flow. Each can be applied individually, or in any combination in sequence. The feasibility of our selections is proved via experimental evaluation on traffic traces of our campus and a commercial ISP. We observe 2 to 5 times improvement in processing speed against the untuned classification system and Snort Engine, while maintaining the same level of accuracy.

  • Out-of-Sequence Traffic Classification Based on Improved Dynamic Time Warping

    Jinghua YAN  Xiaochun YUN  Hao LUO  Zhigang WU  Shuzhuang ZHANG  

     
    PAPER-Information Network

      Vol:
    E96-D No:11
      Page(s):
    2354-2364

    Traffic classification has recently gained much attention in both academic and industrial research communities. Many machine learning methods have been proposed to tackle this problem and have shown good results. However, when applied to traffic with out-of-sequence packets, the accuracy of existing machine learning approaches decreases dramatically. We observe the main reason is that the out-of-sequence packets change the spatial representation of feature vectors, which means the property of linear mapping relation among features used in machine learning approaches cannot hold any more. To address this problem, this paper proposes an Improved Dynamic Time Warping (IDTW) method, which can align two feature vectors using non-linear alignment. Experimental results on two real traces show that IDTW achieves better classification accuracy in out-of-sequence traffic classification, in comparison to existing machine learning approaches.

  • Towards Cost-Effective P2P Traffic Classification in Cloud Environment

    Tao BAN  Shanqing GUO  Masashi ETO  Daisuke INOUE  Koji NAKAO  

     
    PAPER-Network and Communication

      Vol:
    E95-D No:12
      Page(s):
    2888-2897

    Characterization of peer-to-peer (P2P) traffic is an essential step to develop workload models towards capacity planning and cyber-threat countermeasure over P2P networks. In this paper, we present a classification scheme for characterizing P2P file-sharing hosts based on transport layer statistical features. The proposed scheme is accessed on a virtualized environment that simulates a P2P-friendly cloud system. The system shows high accuracy in differentiating P2P file-sharing hosts from ordinary hosts. Its tunability regarding monitoring cost, system response time, and prediction accuracy is demonstrated by a series of experiments. Further study on feature selection is pursued to identify the most essential discriminators that contribute most to the classification. Experimental results show that an equally accurate system could be obtained using only 3 out of the 18 defined discriminators, which further reduces the monitoring cost and enhances the adaptability of the system.

  • Fast Traffic Classification Using Joint Distribution of Packet Size and Estimated Protocol Processing Time

    Rentao GU  Hongxiang WANG  Yongmei SUN  Yuefeng JI  

     
    PAPER

      Vol:
    E93-D No:11
      Page(s):
    2944-2952

    A novel approach for fast traffic classification for the high speed networks is proposed, which bases on the protocol behavior statistical features. The packet size and a new parameter named "Estimated Protocol Processing Time" are collected from the real data flows. Then a set of joint probability distributions is obtained to describe the protocol behaviors and classify the traffic. Comparing the parameters of an unknown flow with the pre-obtained joint distributions, we can judge which application protocol the unknown flow belongs to. Distinct from other methods based on traditional inter-arrival time, we use the "Estimated Protocol Processing Time" to reduce the location dependence and time dependence and obtain better results than traditional traffic classification method. Since there is no need for character string searching and parallel feature for hardware implementation with pipeline-mode data processing, the proposed approach can be easily deployed in the hardware for real-time classification in the high speed networks.