The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] turn model(3hit)

1-3hit
  • Low-Cost Adaptive and Fault-Tolerant Routing Method for 2D Network-on-Chip

    Ruilian XIE  Jueping CAI  Xin XIN  Bo YANG  

     
    LETTER-Computer System

      Pubricized:
    2017/01/20
      Vol:
    E100-D No:4
      Page(s):
    910-913

    This letter presents a Preferable Mad-y (PMad-y) turn model and Low-cost Adaptive and Fault-tolerant Routing (LAFR) method that use one and two virtual channels along the X and Y dimensions for 2D mesh Network-on-Chip (NoC). Applying PMad-y rules and using the link status of neighbor routers within 2-hops, LAFR can tolerate multiple faulty links and routers in more complicated faulty situations and impose the reliability of network without losing the performance of network. Simulation results show that LAFR achieves better saturation throughput (0.98% on average) than those of other fault-tolerant routing methods and maintains high reliability of more than 99.56% on average. For achieving 100% reliability of network, a Preferable LAFR (PLAFR) is proposed.

  • A New Multiple-Round Dimension-Order Routing for Networks-on-Chip

    Binzhang FU  Yinhe HAN  Huawei LI  Xiaowei LI  

     
    PAPER-Computer System

      Vol:
    E94-D No:4
      Page(s):
    809-821

    The Network-on-Chip (NoC) is limited by the reliability constraint, which impels us to exploit the fault-tolerant routing. Generally, there are two main design objectives: tolerating more faults and achieving high network performance. To this end, we propose a new multiple-round dimension-order routing (NMR-DOR). Unlike existing solutions, besides the intermediate nodes inter virtual channels (VCs), some turn-legally intermediate nodes inside each VC are also utilized. Hence, more faults are tolerated by those new introduced intermediate nodes without adding extra VCs. Furthermore, unlike the previous solutions where some VCs are prioritized, the NMR-DOR provides a more flexible manner to evenly distribute packets among different VCs. With extensive simulations, we prove that the NMR-DOR maximally saves more than 90% unreachable node pairs blocked by faults in previous solutions, and significantly reduces the packet latency compared with existing solutions.

  • Routing in Hexagonal Networks under a Corner-Based Addressing Scheme

    Huaxi GU  Jie ZHANG  Zengji LIU  Xiaoxing TU  

     
    LETTER-Networks

      Vol:
    E89-D No:5
      Page(s):
    1755-1758

    In this letter, a new addressing scheme for hexagonal networks is proposed. Using the new addressing scheme, many routing algorithms designed for networks using square-based topologies such as mesh and torus can also be applied to hexagonal networks. Methods of applying the turn model to hexagonal networks are derived, with some new minimal and partial adaptive routing algorithms obtained. Simulations of the new routing algorithms under different working conditions are carried on hexagonal networks of various sizes. The results show that the proposed algorithms can offer lower packet delay and loss rate than the popular dimension order routing algorithm.